从上世纪70年代开始,国内外遥感影像分类研究逐渐成为学术界关注的焦点。早期主要采用统计模式识别方法,如1980年的最大似然法和1983年的光谱特征分类,主要用于获取森林资源信息。随着技术进步,预处理、多源信息融合、人工智能理论以及分类后处理等新方法应运而生,以提高分类精度。近年来,人工神经网络模型作为综合数据分类方法受到广泛关注。
国内外遥感影像分类研究综述
相关推荐
国内外量化交易研究现状分析
1.2 国内外研究现状
1.2.1 国外研究现状
国外有关量化交易的研究内容非常广阔,这里主要选取公开出版的著作进行讨论。斯坦福大学华人统计学家黎子良从理论研究的角度讲述了数量金融中最重要的统计模型和方法,通过统计建模与统计决策的理论,将复杂的金融理论与投资实务相结合,具有深刻的理论意义和借鉴价值。Richard Tortoriello归纳了七个投资维度:盈利性、估值、现金流、成长性、资产配置、价格动量及危险信号,给出了如何有效结合单个投资因子或组件因子,构建多因子策略,从而形成更全面的选股模型。金斯伯格详细阐述了基于MATLAB软件的量化投资技术,特别是对三大类金融工具箱的介绍,具有良好的实操性。Andrew Pole阐述了统计套利的发展历程和基本原理,特别是对实施统计套利过程中所用的几类重要统计模型进行了分析。Irene Aldridge全面介绍了高频交易的历史、适用范围、实施高频交易所需的模型和关键技术,并对交易的整个流程进行了详细介绍。Barry Johnson为量化投资中的算法交易程序设计部分提供了技术基础。
1.2.2 国内研究现状
国内有关量化交易的研究主要由中国量化投资学会理事长丁鹏博士主导,涵盖多个领域。
数据挖掘
0
2024-10-31
国内外研究现状Linux内存取证及其方法
1.2 国内外研究现状
1.2.1 Linux内存取证研究现状在对计算机系统进行取证调查时,具备获取和分析物理内存(RAM)数据的能力是至关重要的。因为,物理内存中不仅保存有最近运行程序、打开文件以及访问网络等操作所留下的痕迹信息,并且还能检索到一些只在内存中出现且未曾保存到硬盘上的数据信息,例如恶意代码入侵的痕迹信息以及磁盘加密文件的解密密钥等易失性数据信息。与此类似的是,在进行Android手机取证调查时,同样需要具备获取和分析物理内存(也称作运行内存)数据的能力。由于Android系统是基于Linux内核开发的,因此可以把Linux内存取证的研究思路和方法借鉴到Android物理内存取证的研究工作中。
Linux内存的获取方法获取Linux内存镜像传统的方法是在dev/mem目录下使用dd命令获取物理内存的映射文件,但只可以获取到物理内存前896MB的数据。如果物理内存的大小超过896MB,则无法获取完整的内存数据。随着Linux内核安全机制的增强,从内核版本Linux 2.6开始这种方法便在所有的Linux系统发行版中被禁止了。为了获取物理内存中完整的内容,J. Sylve和A. Case[3]开发了可导入内核模块LiME(以前被称为DMD)[4],取证调查人员把该内核模块加载到系统内核就可以获取到Linux和Android系统的完整内存(RAM)镜像。这虽然被公认为目前最好的方法,但是加载...
SQLite
0
2024-10-30
2005 年国内外 IP 段总结
国内外 IP 地址段汇总,供您参考。
Access
2
2024-05-13
世界地图遥感影像分析
将您关注的shp格式区域与世界地图遥感栅格影像进行叠加,能够实现更精细化的数据分析和研究。
Access
3
2024-05-26
国内外发展现状 - GM T 0002-2012 SM4分组密码算法
1.2国内外发展现状1.2.1用户画像的发展与应用Alan Cooper在1983年提出了Persona(用户画像)这一概念(穆德,2007),他认为Persona是通过从用户真实数据抽象出来的用户模型。对目标不同维度例如用户的年龄、性别、行为特征抽象出用户典型特征,然后将这些典型特征标签化再进行组合,这样便形成了一个用户原型。另外一种对用户画像的定义是对现实生活中的用户行为进行数学建模。通过对用户的人口属性,社会交往,行为偏好等主要信息建模分析,从而抽象出一个用户的信息全貌,为进一步分析用户的行为习惯等重要信息,提供坚实的基础。通过以上两种定义可以得知,用户画像从具象和抽象的角度来说,是对用户信息抽象出的一个标签集合。因此,对于用户画像系统的发展和应用我们可以从用户的自然属性和用户的行为属性角度分别进行详细的阐述。 1.2.1.1用户的自然属性指的是用户的基本信息研究。最基本的自然属性包含用户的年龄,性别,职业、学历,受教育程度等静态信息。用户的社会属性包括婚姻状况,家庭构成,信息渠道等。赖茂生、屈鹏(2008)通过以用户的自然属性、社会属性为切入点,以用户在搜索中使用的查询语言做为研究对象,通过网络调查问卷的方式以及对搜索引擎日志分析方式,在用户的性别、年龄、学历等不同维度来判断用户自然属性对其语言行为的影响。 1.2.2.2用户的行为属性用户画像中对用户的行为进行研究,利用现在的数据挖掘的相关技术来实现,是用户画像的真正价值所在。由于互联网数据的复杂性以及实时性,其研究过程体现用户的行为特征以及兴趣爱好,既可以用过个体层面来发现用户属于什么群体分布,也可以从用户聚集的人群中发现不同个体之间的联系,对于不同的人群给以不用的用户价值,并对不同的用户提供个性的服务,及用不同的营销策略。张慷(2014)基于Hadoop平台,对移动用户的DPI日志处理与分析,从而提
spark
0
2024-10-11
PythonFmask算法在遥感图像中实现云分类的Matlab影像去阴影代码
该存储库中的Matlab图像去阴影代码PyFmask,尽管目前处于试验阶段,但仍然是一个非常值得开发的工具。我们鼓励您尝试使用,并期待您的反馈和建议,这将有助于我们进一步改进该库。快速入门的方法包括下载存储库并将其本地化到当前工作目录,然后运行示例脚本Landsat8Scene.py。该代码提供了灵活的使用方式,特别适用于处理Landsat卫星图像数据。详细安装步骤请参阅存储库的README文档。
Matlab
0
2024-07-27
基于半监督学习的遥感图像分类研究优化
探讨了利用半监督学习方法进行遥感图像分类的研究,重点在于优化分类结果的准确性和效率。研究表明,通过引入半监督学习策略,可以显著提升遥感图像分类的性能,适用于各种实际应用场景。
算法与数据结构
0
2024-09-14
遥感影像库中数据挖掘与知识发现的探索
杜培军在总结国内外空间数据挖掘与遥感影像数据挖掘发展态势的基础上,分析了当前遥感影像库中数据挖掘存在的问题和不足,并提出了改进建议。
数据挖掘
3
2024-07-16
基于分类的医疗影像分割技术
这个程序是用M文件编写的,运行环境为Matlab,也可以转化为C++运行。它的功能是自动执行医疗影像的分割操作。
Matlab
0
2024-09-30