求解抛物型方程的例子
考虑一个带有矩形孔的金属板上的热传导问题。板的左边保持在100°C,板的右边热量从板向环境空气定常流动,其他边及内孔边界保持绝缘。初始时,板的温度为0°C。此问题可以概括为如下定解问题:
- 区域的边界顶点坐标为:(-0.5, -0.8), (-0.5, 0.8), (0.5, 0.8)
- 内边界的顶点坐标为:(-0.05, -0.4), (-0.05, 0.4), (0.05, -0.4), (0.05, 0.4)
此问题的数学模型是一个二维热传导方程,常用有限差分法或有限元法进行数值求解。在MATLAB中,可以通过建立网格、定义初始条件和边界条件,利用求解抛物型方程的数值方法进行计算,进而得到金属板在不同时间步长下的温度分布。"