介绍了单纯形算法在MATLAB中的实现方法,代码包括了详细的注释,帮助读者理解每一步骤的逻辑。以下是MATLAB实现代码:
function [x, fval] = simplex(c, A, b)
% 单纯形算法求解线性规划问题
% 输入:c - 目标函数系数
% A - 不等式约束矩阵
% b - 约束右侧常数
% 输出:x - 最优解
% fval - 最优值
[m, n] = size(A);
% 变量个数和约束个数
A = [A, eye(m)];
% 加入松弛变量
c = [c, zeros(1, m)];
% 扩展目标函数
basic = n + 1:n + m;
nonbasic = 1:n;
x = zeros(n + m, 1);
while true
% 计算每个非基变量的检验数
z = c(nonbasic) - c(basic) * A(:, nonbasic);
[zval, entering] = max(z);
if zval <= 0
break; % 已经找到最优解
end
% 计算最优入基变量
entering = nonbasic(entering);
ratio = b ./ A(:, entering);
[minRatio, leaving] = min(ratio);
leaving = basic(leaving);
% 更新基变量
basic(basic == leaving) = entering;
nonbasic(nonbasic == entering) = leaving;
% 更新解
x(basic) = b - A(:, nonbasic) * x(nonbasic);
end
fval = c(basic) * x(basic); % 最优目标值
end
这段代码通过单纯形法求解标准形式的线性规划问题,提供了目标函数系数、约束矩阵和约束常数作为输入,输出最优解和最优目标值。每个步骤都配有详细的注释,确保读者能够逐步理解算法的执行过程。