This MATLAB example demonstrates the use of gradient descent to iteratively solve for the coefficients of a noisy quadratic curve. The algorithm is applied to fit a quadratic curve model, and the noisy data points are used to estimate the optimal coefficients through gradient descent optimization. This example is designed to inspire and help others understand how gradient descent can be applied in real-world curve fitting problems.
Gradient Descent Fitting Algorithm Example in MATLAB
相关推荐
Softmax Regression Implementation for MNIST Classification Using Gradient Descent in MATLAB
该项目提供了基于梯度下降的softmax回归实现,专注于MNIST数据分类。此外,还包含多个领域的Matlab仿真代码,涵盖智能优化算法、神经网络预测、信号处理等应用。
Matlab
0
2024-10-31
Matlab Implementation of Gradient-Based ICA Algorithm
一种基于梯度的ICA算法
本算法利用梯度优化方法来实现独立成分分析(ICA)。ICA是一种常用于信号分离的技术,而梯度优化可以有效地提升算法的收敛速度和性能。以下是该算法的主要步骤:
初始化:设定初始的权重矩阵和学习率。
梯度计算:通过计算梯度,更新权重矩阵以最大化独立性。
收敛判定:当权重矩阵变化小于预定阈值时,判定收敛,输出分离信号。
优化更新:利用梯度下降法持续优化结果,确保分离效果的最优化。
该算法能够有效处理盲源分离问题,且具有较强的实际应用价值。
Matlab
0
2024-11-05
Simulated Annealing Algorithm Model Example
模拟退火算法模型实例,基于MATLAB的模拟退火算法说明解释及介绍。
Matlab
0
2024-11-04
Model-Based Value Iteration Algorithm for Deterministic Cleaning Robots A Reinforcement Learning and Dynamic Programming Example in MATLAB
Model-based value iteration algorithm for deterministic cleaning robots. This simple implementation of the value iteration algorithm serves as a helpful starting point for beginners in reinforcement learning and dynamic programming. The deterministic cleaning robot MDP involves the robot collecting used cans and recharging its battery. The state represents the robot's position, and the action defines the movement direction, either left or right. The first (1) and last (6) states are terminal states. The goal is to find the optimal policy to maximize the reward from any initial state. This is an example of Q-iteration (model-based value iteration DP). Reference: Algorithm 2-1, from: @book{busoniu2010reinforcement, title={Reinforcement Learning and Dynamic Programming Using Function Approximation}, authors={Busoniu, Lucian and Babuska, Robert and De Schutter, Bart and Ernst, Damien}, year={2010}, publisher={CRC Press}}.
Matlab
0
2024-11-06
Gradient Design Resources
This archive contains resources related to gradient design.
Hbase
3
2024-06-22
Ellipse Fitting with Least Squares in Matlab
针对一组x,y值的基于最小平方方差和的椭圆和圆的拟合,用Matlab实现。
Matlab
0
2024-11-01
MATLAB_Nonlinear_Fitting_PPT
MATLAB非线性拟合课件,教你怎样熟练运用MATLAB进行非线性拟合处理。
Matlab
0
2024-11-04
Gradient-Enhanced Sparse Grid Interpolation in MATLAB
在高维插值中,我们面临“维数灾难”:当我们增加维数时,样本数呈指数增长。减少这种影响的一种方法是使用稀疏网格。当梯度信息可用时,例如来自伴随求解器,梯度增强稀疏网格提供了进一步减少样本数量的可能性。
Matlab
0
2024-11-04
Matlab Fitting Toolbox for Experimental Data Processing
在使用Matlab拟合工具箱处理试验数据时,首先需要导入数据。可以使用以下代码示例:
load('data.mat'); % 导入数据
x = data(:,1); % 自变量
y = data(:,2); % 因变量
接下来,使用fit函数来进行拟合。例如,若要拟合一个线性模型:
ft = fit(x, y, 'poly1'); % 线性拟合
通过plot函数可以可视化拟合结果:
plot(ft, x, y); % 绘制拟合曲线与原始数据
使用Matlab拟合工具箱的优势在于其图形界面友好,适合初学者。此外,工具箱支持多种拟合类型,如多项式拟合、指数拟合等,使得数据处理更加灵活。
Matlab
0
2024-11-03