介绍的吉布斯采样 MATLAB 代码主要用于估计2D单工LDA模型,专注于时空和旅行行为特征。主要的计算成本源于根据多项式分布生成单词-主题分配z。为提高计算速度,提供了两个混合函数mnrnd_mex.c和mnrnd_mex_noscale.c。使用mnrnd_mex与MATLAB中的mnrnd相同,而mnrnd_mex_noscale可接受未按比例分配的输入,例如,mnrnd_mex_noscale([1,2,3,4])等价于mnrnd_mex([0.1,0.2,0.3,0.4])。
Gibbs Sampling MATLAB Code for Travel Behavior Anomaly Modeling
相关推荐
Gibbs Sampling MATLAB Code for LDA
本示例展示了吉布斯采样的MATLAB代码,用于LDA(Latent Dirichlet Allocation)模型的实现。代码主要涉及参数设置和迭代过程,确保有效性和准确性。请参考以下实现细节。
Matlab
0
2024-11-04
Gibbs Sampling Matlab Code for DynamicAuthorTopicModel
吉布斯采样 Matlab代码 - DynamicAuthorTopicModel: DynamicAuthorTopicModel
吉布斯采样是一种常用于生成式模型的马尔科夫链蒙特卡洛方法。在DynamicAuthorTopicModel中,吉布斯采样被用来进行主题建模,特别是在动态文本数据中。
以下是实现DynamicAuthorTopicModel的吉布斯采样的Matlab代码示例。
Matlab代码实现:
% 示例代码: DynamicAuthorTopicModel
% 定义模型参数和数据
K = 10; % 主题数
V = length(vocab); % 词汇表大小
T = length(documents); % 文档数
% 初始化参数
phi = rand(K, V); % 主题-词分布
theta = rand(T, K); % 文档-主题分布
% 进行吉布斯采样
for iter = 1:1000
for t = 1:T
for w = 1:length(documents{t})
word = documents{t}(w);
% 更新主题分配
% 计算条件概率并选择新主题
new_topic = ...
end
end
end
该代码展示了如何使用吉布斯采样方法为DynamicAuthorTopicModel进行训练和推断。
Matlab
0
2024-11-05
Android-Travel-Application Explore Your Travel Needs with Android Integration
Android Travel Application: This application is an Android-based travel app. Users can log in/register on the application, and their information is stored in Firebase, a cloud-based NoSQL database. Upon logging in, users are directed to their profile page, where they can view their personal registration information and upload a profile picture using the device's built-in Camera app. Users can select a country and retrieve information about it compared to their current location. For instance, they can obtain information about the chosen country, search for flights to the specified country, use a currency conversion calculator, or view a map of the selected location. These services are provided by online REST APIs, such as Google Maps API and restcountries.eu.
NoSQL
0
2024-10-25
VAD Function in MATLAB Code-pyBK Speaker Differentiation Python System Based on Binary Key Modeling
The vad function MATLAB code for pyBK implements speaker differentiation on a list of audio files by performing speaker binarization (speech segmentation and clustering in multi-speaker scenarios). The system utilizes a binary key background model (KBM), which is trained on conference data, eliminating the need for external training datasets. This results in a system that is easy to operate and adjust for speaker differentiation tasks. Additionally, the implementation includes useful features for the speaker digitization system pipeline. The code was developed and tested in Python 3.6 using conda, relying on common packages for audio processing, feature extraction, and speech activity detection. Installation steps:1. $ conda create -n pyBK python=3.62. $ source activate pyBK3. $ conda install numpy4. $ conda install -c conda-forge librosa5. $ pip install webrtcvad6. $ git clone h...
Matlab
0
2024-11-05
Modeling Toolbox for MATLAB Resources
不错的东西,建模资源 matlab工具箱。
Matlab
0
2024-11-04
MATLAB_DC_Motor_Modeling
MATLAB开发-直流电机建模。给出了直流电机的建模方法。
Matlab
0
2024-11-04
Implementing ARMA Modeling and Forecasting in MATLAB
此代码可以直接实现ARMA建模和预测。请注意,MATLAB自身说明文档无法实现预测功能。
Matlab
0
2024-11-04
基于 Gibbs 采样的 Rauch-Tung-Striebel 平滑器(Gibbs-RTSS)的 MATLAB 实现
该软件包提供了 Gibbs-RTSS 的 MATLAB 实现,该实现如马克·彼得·德森罗思(Marc Peter Deisenroth)和亨里克·奥尔森(Henrik Ohlsson)在 2011 年美国控制会议论文集(ACC 2011)中所述。
软件包还包含以下过滤器/平滑器的实现:
Gibbs 滤波器/Gibbs-RTSS
EKF/EKS
UKF/URTSS
CKF/CKS
运行 demo_nonlinear_model 可从论文中复制论文非线性示例的结果(图和数字)。
该代码需要 MATLAB R2007a 或更高版本。
(C) Marc Deisenroth,版权所有 2016
如果保留此版权声明,并且对所做的任何更改进行了注释,则出于任何非商业目的,任何人都可以复制、使用或修改此软件和随附文档。此软件和文档的分发不附带任何保证。
欢迎提供有关代码的反馈(有用性、错误、效率低等)。
Matlab
3
2024-05-30
Matlab_Image_Processing_in_Mathematical_Modeling
关于数学建模方面的Matlab的图像处理,文件为PDF格式。
Matlab
0
2024-11-06