在高维插值中,我们面临“维数灾难”:当我们增加维数时,样本数呈指数增长。减少这种影响的一种方法是使用稀疏网格。当梯度信息可用时,例如来自伴随求解器,梯度增强稀疏网格提供了进一步减少样本数量的可能性。
Gradient-Enhanced Sparse Grid Interpolation in MATLAB
相关推荐
MATLAB_Scattered_Interpolation_Surface
MATLAB 空间 散点插值 绘制 曲面 源代码示例:
% 生成随机散点
x = rand(1, 100);
y = rand(1, 100);
z = sin(2*pi*x) + cos(2*pi*y);
% 创建网格
[xq, yq] = meshgrid(linspace(0, 1, 100), linspace(0, 1, 100));
% 插值
zq = griddata(x, y, z, xq, yq, 'cubic');
% 绘制曲面
surf(xq, yq, zq);
shading interp;
colorbar;
title('MATLAB 散点插值曲面');
此代码使用 griddata 函数进行 散点插值,绘制出的 曲面 为插值结果的可视化。
Matlab
0
2024-11-04
Adding Coordinate Grid in MATLAB
坐标网格的添加
在图形绘制过程中,为了精确地知道图形上某点的坐标,需要绘制坐标网格来定位。MATLAB 7语言中提供了以下函数来实现这一功能:- grid off 命令关闭坐标网格;- grid on 命令打开坐标网格;- grid minor 命令使用更细化的网格;- grid(AX,…) 命令使用AX坐标系代替当前坐标系。
Matlab
0
2024-11-04
Gradient Descent Fitting Algorithm Example in MATLAB
This MATLAB example demonstrates the use of gradient descent to iteratively solve for the coefficients of a noisy quadratic curve. The algorithm is applied to fit a quadratic curve model, and the noisy data points are used to estimate the optimal coefficients through gradient descent optimization. This example is designed to inspire and help others understand how gradient descent can be applied in real-world curve fitting problems.
Matlab
0
2024-11-05
Gradient Design Resources
This archive contains resources related to gradient design.
Hbase
3
2024-06-22
Matlab Implementation of Gradient-Based ICA Algorithm
一种基于梯度的ICA算法
本算法利用梯度优化方法来实现独立成分分析(ICA)。ICA是一种常用于信号分离的技术,而梯度优化可以有效地提升算法的收敛速度和性能。以下是该算法的主要步骤:
初始化:设定初始的权重矩阵和学习率。
梯度计算:通过计算梯度,更新权重矩阵以最大化独立性。
收敛判定:当权重矩阵变化小于预定阈值时,判定收敛,输出分离信号。
优化更新:利用梯度下降法持续优化结果,确保分离效果的最优化。
该算法能够有效处理盲源分离问题,且具有较强的实际应用价值。
Matlab
0
2024-11-05
Interpolation Animation Incremental Polynomial Approximation in MATLAB Development
插值动画:本项目探讨了动画多项式近似的递增顺序,提升动画表现力。当前版本的剪辑可观看:点击这里
Matlab
0
2024-11-04
Enhanced Genetic Algorithm with Interactive Learning in MATLAB
This article explores a new type of genetic algorithm in MATLAB that incorporates interactive learning. This innovative genetic algorithm technique aims to enhance the standard genetic algorithm by allowing solutions to learn from each other during the evolutionary process, thus improving overall performance and convergence speed.
Key Features of the New Genetic Algorithm
Interactive Learning Mechanism: Solutions exchange information during iterations, allowing for mutual learning, which enhances diversity and prevents premature convergence.
Performance Optimization: Compared to traditional genetic algorithms, the introduction of an interactive component enables faster convergence and better optimization results.
Application in MATLAB: The implementation of this genetic algorithm in MATLAB leverages the platform’s powerful computation capabilities, making it suitable for complex optimization tasks.
Practical Applications
The new genetic algorithm with interactive learning can be applied to various fields, including engineering design, machine learning, and data science, where optimization problems are prevalent. MATLAB’s rich toolset allows for seamless integration and testing of this algorithm across these domains.
Code Example
Below is a simple example to demonstrate the basic structure of this enhanced genetic algorithm in MATLAB:
% Example of Enhanced Genetic Algorithm with Interactive Learning
function optimized_solution = enhanced_genetic_algorithm(pop_size, generations)
% Initialization
population = initialize_population(pop_size);
for gen = 1:generations
% Evaluation and Selection
fitness = evaluate_population(population);
selected_parents = selection(population, fitness);
% Crossover with Interactive Learning
offspring = crossover_with_learning(selected_parents);
% Mutation
population = mutate(offspring);
end
optimized_solution = find_best_solution(population);
end
This function highlights the core stages: initialization, selection, crossover with learning, and mutation. Each step is designed to reinforce the algorithm's interactive learning framework.
Matlab
0
2024-11-05
MATLAB_Add_Grid_To_Image_Code
以下是给照片添加网格的程序。用户可以根据需要自主编辑,调整网格密度。
% 读取图片
img = imread('your_image.jpg');
imshow(img);
hold on;
% 设置网格密度
grid_density = 20;
% 绘制网格
for i = 1:grid_density:size(img, 1)
plot([1 size(img, 2)], [i i], 'r');
end
for j = 1:grid_density:size(img, 2)
plot([j j], [1 size(img, 1)], 'r');
end
hold off;
Matlab
0
2024-11-02
OMP_Algorithm_Optimal_Solution_In_Sparse_Representation_MATLAB
OMP算法(MATLAB)稀疏表示中用来求最优解。这个方法相对较好,并提供了相关的demo。
Matlab
0
2024-11-01