OMP算法(MATLAB)稀疏表示中用来求最优解。这个方法相对较好,并提供了相关的demo。
OMP_Algorithm_Optimal_Solution_In_Sparse_Representation_MATLAB
相关推荐
Image Fusion Using Morphological Analysis and Sparse Representation in Matlab
本视频介绍了基于Matlab的形态学分析和稀疏表征的CSMCA图像融合方法,代码均可运行,适合初学者。1. 主函数:main.m;调用函数:其他m文件;运行结果无需额外操作。2. 运行版本:Matlab 2019b。如有错误,根据提示调整,若有疑问可私信博主。3. 运行步骤:- 步骤一:将所有文件放入Matlab当前文件夹;- 步骤二:双击打开main.m;- 步骤三:点击运行,等待结果。4. 服务咨询:可私信博主或扫描视频QQ名片获取更多支持,包括完整代码、期刊复现、程序定制及科研合作等。
Matlab
0
2024-11-04
TimeTabling-GeneticAlgorithm Genetic Algorithm Solution for Weekly Timetable Problem in MATLAB
遗传算法是为无法通过称为NP-Hard问题的标准方法解决的问题找到足够好的解决方案的方法。虽然它不能保证最好的解决方案,但我们可以在该方法中为大多数工程问题找到相对足够好的解决方案[1]。高中大学等教育机构使用每周课程时间表以最佳方式使用所有资源。制定最佳每周时间表就是NP-Hard问题的一个例子,它无法用任何检查每个概率的粗暴方法解决。在这个存储库中,我们使用遗传算法提供了该问题的解决方案,该算法试图最小化确定的适应度函数,该函数是对时间表如何优化的一种度量[2]。
Matlab
0
2024-11-05
Vector Representation in MATLAB
向量表示法
对于连续时间信号f(t),我们可以用两个行向量f和t来表示,其中向量t是行如t = t1:p:t2的MATLAB命令定义的时间范围向量,t1为信号起始时间,t2为中止时间,p为时间间隔。向量f为连续信号f(t)在向量t所定义的时间点上的样值。
Matlab
0
2024-10-31
VLAD Descriptors for Image Feature Representation in MATLAB
VLAD (Vector of Locally Aggregated Descriptors) is an extension of the Bag of Words (BoW) model. This function computes VLAD descriptors using information such as visual words and image descriptors. The size of the visual words matrix is determined by no_of_words x no_of_dimensions_of_descriptors, where the number of dimensions depends on the descriptor used (e.g., SIFT has 128 dimensions, and SURF has 64). The imageDescriptors matrix has a size of no_of_descriptors_detected x no_of_dimensions_of_descriptors (as mentioned above).
Matlab
0
2024-11-05
Gradient-Enhanced Sparse Grid Interpolation in MATLAB
在高维插值中,我们面临“维数灾难”:当我们增加维数时,样本数呈指数增长。减少这种影响的一种方法是使用稀疏网格。当梯度信息可用时,例如来自伴随求解器,梯度增强稀疏网格提供了进一步减少样本数量的可能性。
Matlab
0
2024-11-04
匹配追踪算法OMP的Matlab代码
实验中常使用的匹配追踪算法OMP的Matlab代码子程序,非常实用。
Matlab
0
2024-08-10
MATLAB Cody Challenge Solution Fibonacci Sequence Calculation in MATLAB
This repository contains 94 solutions to solve Fibonacci problems on MATLAB Cody. The solutions are ranked from the most common to the least common, indicating increasing complexity. The solutions are correct and come with comments, but they may not be the most efficient. Below are some examples of related problems and their solution counts:
Fibonacci sequence: 7,859 solvers
Create a times table: 6,488 solvers
Sum all numbers in an input vector: 23,225 solvers
Identify whether a number is odd: 16,120 solvers
Note: While the solutions for the Fibonacci sequence are effective, they may not be optimized for performance.
Thank you for the useful resources and links provided for inspiration!
License: Free to use and distribute.
Matlab
0
2024-11-06
optimal-state-estimation-errata
Optimal State Estimation Errata
In the realm of optimal state estimation, several key updates and corrections have been identified. It is crucial to pay attention to these errata for ensuring accurate modeling and estimation. The most common issues relate to incorrect assumptions about system dynamics and observation models, as well as the application of certain algorithms in specific scenarios. Understanding these nuances will significantly improve the precision of state estimation techniques.
Key Points:
State Representation: Ensure that the state variables correctly represent the system's underlying physical behavior.
Error Propagation: Update the error models used in estimation to reflect real-world noise and disturbances.
Algorithmic Adjustments: Be mindful of the specific algorithm's limitations and optimize based on system requirements.
By addressing these errata, practitioners can improve the performance of state estimation in complex environments.
Matlab
0
2024-11-06
MATLAB实现的正交匹配追踪算法(OMP)
在压缩感知的稀疏重构中,广泛应用的正交匹配追踪(OMP)算法的MATLAB程序,源自香港大学电子工程系沙威老师的开发。代码附有详细注释,便于读者理解和使用。经过测试,程序可正常运行,帮助读者深入了解该算法以及压缩感知和稀疏重构的相关知识。
Matlab
0
2024-11-03