实验中常使用的匹配追踪算法OMP的Matlab代码子程序,非常实用。
匹配追踪算法OMP的Matlab代码
相关推荐
MATLAB实现的正交匹配追踪算法(OMP)
在压缩感知的稀疏重构中,广泛应用的正交匹配追踪(OMP)算法的MATLAB程序,源自香港大学电子工程系沙威老师的开发。代码附有详细注释,便于读者理解和使用。经过测试,程序可正常运行,帮助读者深入了解该算法以及压缩感知和稀疏重构的相关知识。
Matlab
0
2024-11-03
压缩传感(正交匹配追踪算法)软件
随着技术的进步,压缩传感(正交匹配追踪算法)软件已成为新一代数据处理工具的核心。该软件利用先进的算法,有效提高了数据采集和处理的效率。
Matlab
2
2024-07-28
MATLAB阶乘代码完全图的完美匹配递归算法
MATLAB阶乘代码自述文件,介绍了完全图的完美匹配递归算法。该算法用于寻找Kn完全图中的完美匹配,仅适用于顶点数为偶数的图。安装后可在MATLAB命令窗口中运行,自动添加项目文件到MATLAB路径并提供示例。算法利用先前为较小完全图找到的完美匹配来构建较大Kn图的完美匹配。
Matlab
0
2024-08-23
omp算法matlab代码-DPCP-UoH学习超平面联合的双重主成分追求
omp算法matlab代码DPCP-UoH论文代码“AISTATS 2021的学习超平面联合的双重主成分追求:理论和算法”综合实验已在MATLAB R2018b中测试通过。RSGM_demo.m生成了图2,展示了具有不同几何递减因子的投影黎曼次梯度法的线性收敛。compare_KSS.m生成了图3,比较了DPCP-KSS、CoP-KSS和PCA-KSS的聚类精度(相同初始化)。run_all_example.m提供了所有方法的一次运行示例,设定了环境尺寸D=4、超平面数K=2、内点数N1=N2=200、体积比M/(M+N)=0.3。
Matlab
0
2024-09-30
优化后的Matlab SIFT匹配代码
这是一个经过测试效果非常好的加拿大人编写的影像SIFT匹配的Matlab代码,希望对您有所帮助。技术改进使得其性能表现尤为出色。
Matlab
3
2024-07-20
matlab匹配滤波代码的CMake笔记
在编写matlab匹配滤波代码时,需要注意CPACK属性的使用,以确保文件过滤所有依赖项,例如/lib64/libpcre2-8.so.0,/lib64/libselinux.so.1等。
Matlab
1
2024-07-26
使用Matlab语言实现图像匹配算法的模板匹配优化
本资源通过模板匹配技术,利用Matlab语言实现了高效的图像匹配功能。
Matlab
0
2024-09-14
MATLAB块匹配算法实现详解
本篇文章将详细介绍如何使用MATLAB实现块匹配算法,其中会探讨块匹配算法的关键步骤和代码实现。块匹配算法广泛应用于图像处理和视频编码,因其在运动估计中的重要性备受关注。
1. 什么是块匹配算法?
块匹配算法是一种用于确定图像块之间相似性的技术,通常应用在视频编码中。通过匹配不同帧中的图像块位置,可以减少视频帧之间的冗余数据。
2. MATLAB 实现块匹配算法的步骤
导入图像数据:首先,导入视频帧或图像序列作为数据源。
划分块区域:将图像划分为多个小块区域,通常是固定尺寸(如8x8或16x16)的方块。
搜索匹配块:通过设定搜索范围,在下一帧中找到最接近的匹配块。
匹配误差计算:使用误差准则(如MSE或SAD)计算块间相似度。
运动矢量获取:基于匹配块的位置计算运动矢量。
3. MATLAB 代码示例
以下是一个简单的MATLAB代码示例:
% 导入帧数据
frame1 = imread('frame1.png');
frame2 = imread('frame2.png');
% 设置块大小和搜索范围
blockSize = 16;
searchRange = 8;
% 执行块匹配算法
motionVectors = blockMatching(frame1, frame2, blockSize, searchRange);
该代码通过加载图像帧并设置块大小和搜索范围,最终获取运动矢量。
4. 总结
MATLAB的块匹配算法可以通过较少的代码量来实现,且适用于各种图像和视频处理任务。通过调整块大小和搜索范围,您可以优化算法的精度和速度。
Matlab
0
2024-11-06
压缩感知利器:OMP算法源码解析
这份压缩感知OMP算法源码,简洁易懂,专为初学者打造,助你轻松理解算法精髓,快速上手实践。
Matlab
2
2024-05-28