归纳学习假设机器学习的任务是在整个实例集合X上确定与目标概念c相同的假设。一般H表示所有可能假设。H中每个假设h表示X上定义的布尔函数。由于对c仅有的信息只是它在训练样例上的值,因此归纳学习最多只能保证输出的假设能与训练样例相拟合。若没有更多的信息,只能假定对于未见实例最好的假设就是训练数据最佳拟合的假设。定义归纳学习假设:任一假设如果在足够大的训练样例中很好地逼近目标函数,则它也能在未见实例中很好地逼近目标函数。(Function Approximation)。决策树基本概念从机器学习看分类及归纳推理等问题(4)第6章决策树
Inductive Learning Hypothesis in Decision Tree Algorithms
相关推荐
Data Mining Decision Tree Techniques for Performance Analysis
该论文具体阐述了数据挖掘中的决策树算法在成绩分析中的应用,帮助观察成绩的总体情况以及成绩的分类等。
数据挖掘
6
2024-10-31
B-Tree、B+Tree、B*Tree数据结构特征
B-Tree
平衡搜索树
所有键和数据存储在叶子节点
节点拥有指向相邻节点的指针
B+Tree
B-Tree的变体
非叶子节点只存储键,叶子节点存储键和数据
指针只存在于叶子节点
查询效率较高,适合范围查询
B*Tree
B-Tree的改进版本
叶子节点之间具有额外指针,实现快速遍历
减少了查询和更新的磁盘访问次数,提高性能
算法与数据结构
9
2024-06-01
B-tree 与 B+tree 数据结构详解
定义
B-tree: 一种自平衡树状数据结构,能够存储数据并允许以对数时间复杂度进行搜索、顺序访问、插入和删除操作。B-tree 中的每个节点可以包含多个键值和子节点,通常比其他树状结构(如二叉树)更宽更浅,这使得它们非常适合于磁盘或其他辅助存储设备上的数据存储和检索。
B+tree: B-tree 的变体,所有数据记录都存储在叶子节点中,内部节点仅存储键值用于索引。此外,所有叶子节点通常通过指针链接在一起,这使得顺序遍历数据变得更加高效。
查找
B-tree: 从根节点开始,比较目标键值与节点中的键值。如果找到匹配项,则返回相关联的数据。否则,根据键值的大小关系,递归地进
算法与数据结构
13
2024-06-30
MATLAB 开发:Fuzzy Regression Tree
使用回归树算法和 ANFIS 训练生成模糊推理系统 (FIS)。
Matlab
9
2024-05-28
Mining_Massive_Datasets_Algorithms
本书重点介绍了用于解决数据挖掘中关键问题的实用算法,甚至可以在最大的数据集上使用这些算法。
数据挖掘
4
2024-10-31
MATLAB Derivative Pricing Techniques and Algorithms
MATLAB求导代码衍生定价的一些衍生定价活动结果。练习涵盖了衍生工具定价的不同算法,并研究了它们的特性。还探讨了与衍生产品定价有关的主题,例如估计信用违约掉期利差的代理方法。所有主题的算法均使用Python和MATLAB进行编码。此存储库中涵盖的主题方法包括:
定价:
欧洲选择
美式期权
数字选项
亚洲选项
希腊文:
欧洲选择
美式期权
数字选项
亚洲选项
定价方式:
二叉树
蒙特卡洛法
布莱克-舒尔斯公式
偏不同方程(FTCS和Crank-Nikolson方案)
减少方差的技术:
凹凸重估法
似然比法
套期保值:
Delta套期保值
CDS传播代理方法(Python):
路口横截面具有股
Matlab
8
2024-11-04
MathModeling_Top10Algorithms
在数学建模中,以下是10种常用算法:1. 线性规划2. 动态规划3. 遗传算法4. 模拟退火5. 粒子群优化6. 神经网络7. 支持向量机8. 回归分析9. 贝叶斯方法10. 图论算法
这些算法在解决实际问题时发挥了关键作用,是每个数学建模者必备的工具。
Matlab
7
2024-11-04
mysql_learning_resources
MySQL必知必会的资源,适合MySQL学习。
MySQL
2
2024-10-31
Deep Learning Trends and Fundamentals
深度学习历史趋势
一、深度学习历史趋势
神经网络的众多名称和命运变迁:
早期发展:20世纪50年代末至60年代初,神经网络研究开始兴起,受到广泛关注。
第一次寒冬:1970年代,由于理论和技术上的限制,神经网络研究进入低谷期。
反向传播算法的引入:1980年代中期,反向传播算法的提出极大地推动了神经网络的研究和发展。
第二次寒冬:1990年代中期,尽管有了突破性的进展,但由于计算资源和数据量的限制,神经网络再次遭遇挫折。
深度学习的复兴:21世纪初至今,随着GPU技术的发展、大数据时代的到来以及算法的不断创新,深度学习迎来了爆发式的增长。
与日俱增的数据量:
互联
算法与数据结构
8
2024-10-31