定义

  • B-tree: 一种自平衡树状数据结构,能够存储数据并允许以对数时间复杂度进行搜索、顺序访问、插入和删除操作。B-tree 中的每个节点可以包含多个键值和子节点,通常比其他树状结构(如二叉树)更宽更浅,这使得它们非常适合于磁盘或其他辅助存储设备上的数据存储和检索。

  • B+tree: B-tree 的变体,所有数据记录都存储在叶子节点中,内部节点仅存储键值用于索引。此外,所有叶子节点通常通过指针链接在一起,这使得顺序遍历数据变得更加高效。

查找

  • B-tree: 从根节点开始,比较目标键值与节点中的键值。如果找到匹配项,则返回相关联的数据。否则,根据键值的大小关系,递归地进入相应的子节点继续查找,直到找到目标键值或到达叶子节点。
  • B+tree: 类似于 B-tree,但最终的查找操作总是在叶子节点上完成,因为所有数据记录都存储在那里。

插入

  • B-tree: 首先查找要插入的新键值的合适位置。如果找到空闲空间,则直接插入。否则,节点将发生溢出,需要进行分裂操作,将节点分成两个节点,并将中间键值提升到父节点。这个过程可能会递归地向上影响到根节点,最终导致树的高度增加。
  • B+tree: 与 B-tree 类似,但新数据记录总是插入到叶子节点中。如果叶子节点溢出,则将其分裂成两个节点,并将中间键值复制到父节点(而不是提升)。

删除

  • B-tree: 定位要删除的键值。如果键值位于叶子节点,则直接删除。如果键值位于内部节点,则需要找到其前驱或后继节点,并用前驱或后继节点的键值替换要删除的键值,然后递归地删除前驱或后继节点的键值。删除操作可能会导致节点下溢,需要进行合并或重新分配操作以维持 B-tree 的平衡性。
  • B+tree: 类似于 B-tree,但删除操作总是从叶子节点开始。如果删除操作导致叶子节点下溢,则需要从兄弟节点借用键值或与兄弟节点合并。

总结

B-tree 和 B+tree 都是高效的树状数据结构,适用于磁盘和数据库索引等场景。B+tree 将所有数据记录存储在叶子节点中,并通过指针链接所有叶子节点,使其在范围查询和顺序访问方面比 B-tree 更具优势。