视频图matlab代码主页:论文“基于全局时间表示的CNN用于红外动作识别”的代码抽象。红外人体动作识别具有多种优势,对光照、外观和阴影变化不敏感。现有方法虽有基于空间或局部时间信息,未考虑全局时间信息对视频中身体运动的更佳描述。本研究提出光流堆叠差异图像(OFSDI)作为新的全局时间表示形式,综合局部、全局和空间时间信息,从红外动作数据中提取鲁棒且判别性强的特征。利用局部、空间和全局时间流应用CNN获取有效的卷积特征图,并通过轨迹约束池聚合为三流轨迹合并的深度卷积描述符(TSTDD)。采用局域约束线性编码(LLC)方法提高特征鲁棒性,并通过线性SVM对动作数据进行分类。实验在红外动作识别数据集InfAR和NTU RGB + D上验证了该方法的优越性。