该软件包包含P-CNN算法的Matlab实现,基于姿势的CNN功能用于动作识别。它集成了预训练的vgg-f外观模型和流模型的Matlab版本,以及Brox光流实现。CNN实现依赖MatConvNet库,在CPU模式下编译。为了提升计算速度,建议启用GPU支持。您可以通过修改提供的my_build.m文件来定制编译设置。演示示例展示了在JHMDB数据集上运行P-CNN的效果。 reproduce_ICCV15_results命令可再现P-CNN的性能。
优化matlab转c代码P-CNN动作识别中的性能提升
相关推荐
MATLAB中的C代码集成动作识别项目
该存储库展示了使用视频动作识别的时间表示方法,通过集成C代码在MATLAB中实现。方法利用预训练的大规模图像数据网络进行特征提取,并结合金字塔池时间序列来捕获短期和长期特征。此外,还提出了一种简单的视频级表示方法,通过时间分割解决了长视频的信息丢失问题。实验结果表明,该方法在第一人称和第三人称动作识别中表现出良好的性能。
Matlab
6
2024-09-16
红外动作识别的全局时间表示CNN代码及数据
视频图matlab代码主页:论文“基于全局时间表示的CNN用于红外动作识别”的代码抽象。红外人体动作识别具有多种优势,对光照、外观和阴影变化不敏感。现有方法虽有基于空间或局部时间信息,未考虑全局时间信息对视频中身体运动的更佳描述。本研究提出光流堆叠差异图像(OFSDI)作为新的全局时间表示形式,综合局部、全局和空间时间信息,从红外动作数据中提取鲁棒且判别性强的特征。利用局部、空间和全局时间流应用CNN获取有效的卷积特征图,并通过轨迹约束池聚合为三流轨迹合并的深度卷积描述符(TSTDD)。采用局域约束线性编码(LLC)方法提高特征鲁棒性,并通过线性SVM对动作数据进行分类。实验在红外动作识别数据
Matlab
3
2024-09-29
MATLAB中CNN水果分类示例的简单代码
这些代码是基于卷积神经网络的水果图像处理示例,作为论文“卷积神经网络应用于水果图像处理的回顾”,Applied Sciences,10(10):3443(2020)的一部分而实现的。展示了水果分类和质量控制示例的实现方法,同时使用预训练模型进行了转移学习。示例以简单方式演示了CNN模型的实现方法,并且代码已注释并提供了描述性信息。详情请阅读原论文,也可在我们的实验室LITRP网站上获取代码。
Matlab
6
2024-09-19
星图识别MATLAB代码-强大的弱监督时间动作本地化
精选的关于弱监督时间动作本地化的出版物列表,帮助研究者在这一领域导航。此存储库仅包含接受的会议论文,以确保可靠性和更新性。最近更新日期为2021年5月3日。性能指标报告了在不同IoU阈值下的平均精确度(mAP),涵盖了THUMOS14和ActivityNet的不同版本。链接指向实现框架的规范。
Matlab
7
2024-08-12
Matlab集成C代码PCA在人脸识别中的KL转换方法
Github的Markdown无法支持LaTeX公式和流程图,导致README.md中的公式格式混乱。已上传报告的PDF版本。应用K-L变换在OCL库中进行人脸识别。K-L变换,即主成分分析(PCA),是基于图像统计特性的一种变换,通过消除数据间的相关性来起到信息压缩的作用。在模式识别和图像处理中,K-L变换能有效降低特征空间维度,减少存储和计算复杂度,同时保持原始数据的关键信息。
Matlab
7
2024-09-28
Matlab人脸识别代码优化
使用Matlab编写的人脸识别代码,主要基于主成分分析(PCA)算法。
Matlab
6
2024-10-01
基于CNN的数字识别MATLAB实现与简要论文
本项目提供LeCUN早期CNN代码的MATLAB改编版本,用于MNIST手写数字识别。代码实现基于卷积神经网络,并附带一份阐述思路的论文,希望能为相关研究提供参考。
Matlab
8
2024-05-28
动作时间-[更加突出的C++]
%9":中触发器的结构如图;
SQLServer
8
2024-08-15
MATLAB漂浮物CNN识别项目设计
这个项目是我设计的,包含了GUI界面,功能完美运行,适合初学者和有经验的学生进阶学习。欢迎大家下载使用,具有高度的学习和参考价值。该资源适用于计算机、通信、人工智能和自动化等领域的学生、教师和从业者,可作为期末课程设计、课程大作业或毕业设计的参考。对于具备基础能力的人士,可以在此基础上进行修改,实现不同的功能。
Matlab
7
2024-09-30