该项目使用人工神经网络对两名男性受试者的照片进行分类。我们采用最小特征值算法提取了他们眼睛、鼻子和嘴巴的特征,并将其简化为一个向量,作为人工神经网络训练和分类的输入。操作步骤包括克隆存储库,将src设为MATLAB的当前文件夹,选择img文件夹中的图像进行可视化结果。程序文件包括Subject0.mat和Subject1.mat,分别包含两位主题图像的特征数据。net.mat和net92.mat包含由NeuroNetworkTraining.m创建的人工神经网络数据库,分别达到92.8%的准确性。