使用Matlab实现人脸特征提取的过程中,PCA技术发挥了重要作用。
PCA在人脸特征提取中的应用
相关推荐
人脸图像特征提取MATLAB代码-FaceClasifier的应用
该项目使用人工神经网络对两名男性受试者的照片进行分类。我们采用最小特征值算法提取了他们眼睛、鼻子和嘴巴的特征,并将其简化为一个向量,作为人工神经网络训练和分类的输入。操作步骤包括克隆存储库,将src设为MATLAB的当前文件夹,选择img文件夹中的图像进行可视化结果。程序文件包括Subject0.mat和Subject1.mat,分别包含两位主题图像的特征数据。net.mat和net92.mat包含由NeuroNetworkTraining.m创建的人工神经网络数据库,分别达到92.8%的准确性。
Matlab
0
2024-09-27
matlab代码用于PCA特征提取-WSMetricLearningWSMetricLearning
matlab代码用于PCA特征提取
Matlab
0
2024-08-30
基于Matlab的人脸特征提取程序
这是一款基于Matlab的人脸特征提取程序,专为人脸识别而设计。
Matlab
2
2024-07-15
Gabor小波在图像纹理特征提取中的应用
Gabor小波是一种常用的方法,用于提取图像的纹理特征,特别适合matlab语言编写的实现。它简单易用且运行稳定。
Matlab
2
2024-07-22
特征提取器优化预训练网络中的特征提取方法
该工具允许从任何预训练的神经网络中提取图像特征,并提供功能:1. 数据加载和存储;2. 特征提取和规范化;3. 自定义模型特征管理。应用于机器学习和图像处理领域。
Matlab
0
2024-08-17
人脸图像特征提取与分类算法比较
人脸图像特征提取使用支持向量机、线性判别分析和四层前馈神经网络进行图像分类。通过训练支持向量机对来自CIFAR-10数据集的10个图像类别进行分类,实现了62.7%的最高准确率。实验探讨了使用PCA和LDA的非传统组合是否优于单独使用这两种方法。此外,测试了在有监督的类质心初始化下,使用聚类方法(如k均值和GMM)进行分类。Matlab要求包括:FDA LDA多类(1.7版)、计算机视觉系统工具箱(8.0版)、神经网络工具箱(11.0版)、统计和机器学习工具箱(版本11.2)。确保在计算机上运行时,CW2Data.mat与Matlab脚本位于同一文件夹中,按顺序运行Matlab步骤1至8。我们的数据挖掘管道利用定向梯度直方图(HOG)进行图像特征提取。
Matlab
0
2024-11-03
人脸识别MATLAB程序包子空间特征提取应用详解
这里提供了多种人脸识别算法的详尽程序,尤其适合进行子空间特征提取研究。
Matlab
0
2024-09-24
MATLAB程序特征提取在时域与频域的应用
目前可提取的特征包括:1. 最大值 2. 最小值 3. 平均值 4. 峰峰值 5. 整流平均值 6. 方差 7. 标准差 8. 峭度 9. 偏度 10. 均方根 11. 波形因子 12. 峰值因子 13. 脉冲因子 14. 裕度因子 15. 重心频率 16. 均方频率 17. 均方根频率 18. 频率方差 19. 频率标准差 20. 谱峭度的均值 21. 谱峭度的标准差 22. 谱峭度的偏度 23. 谱峭度的峭度。
统计分析
0
2024-10-15
基于Matlab的人脸图像特征提取代码
人脸图像特征提取
项目概述
该项目由Bishal Roy开发,他是印度古瓦哈提GIMT的一年级CSE本科生,也是Cosmic Skills的机器学习暑期实习生。
由于代码文件转换为.rar格式时遇到问题,项目代码将以链接形式分享。
项目清单
字符识别项目
项目内容与详情
字符识别项目
项目目标
开发一个工具,将图像作为输入,并从中提取字符(字母、数字、符号)。
应用场景
手写文档识别
打印文档识别
打印记录数据输入
开发工具
Matlab或Octave(推荐使用Octave,因为它开源且易于使用)
工作原理
该项目基于机器学习。通过提供大量数据集作为输入,软件工具可以识别并学习相似的模式。
项目输出
图像
结论
该项目成功地应用了字符分类和图像处理技术,在超过90%的案例中取得了令人满意的结果。
Matlab
2
2024-05-28