MATLAB的S5C算法实现(NeurIPS '19)。 S5C算法利用近似的子梯度选择子样本,并根据时间和内存需求线性缩放数据点的数量。该算法在理论上保证了解决方案的准确性。Mex文件presentation_learning/cdescentCycleC.mexa64适用于64位Linux系统。在其他平台上运行前,请先编译presentation_learning/cdescentCycleC.c以生成适合您平台的mex文件(参见参考资料)。示例脚本位于run_examples/目录中,展示了如何运行代码。所有使用的数据集示例脚本均可在数据集目录中找到,包括文中引用的五个数据集。CIFAR-10数据集可从下载,梵文数据集可从下载Devanagari。使用提供的代码进行研究时,请引用Shin Matsushima和Maria Brbic的“基于选择性采样的可伸缩稀疏子空间聚类”。
MATLAB中的存档算法代码-S5C基于选择性采样的可扩展稀疏子空间聚类(NeurIPS19')
相关推荐
基于 K-子空间的聚类算法
K-子空间算法是一种聚类方法,其思路类似于 K-均值算法,都可以将数据划分到不同的簇中。
Matlab
2
2024-05-30
选择聚类算法
探索聚类算法以有效提取 Web 数据洞察力。
数据挖掘
3
2024-05-25
基于分层熵子图的聚类算法:LEGClust
J.M. Santos 等人提出的 LEGClust 算法是一种基于分层熵子图的聚类算法,该算法已发表在 IEEE TPAMI(第 30 卷,第 1 期,2008 年,1-13 页)。MATLAB 代码可用于实现该算法。
Matlab
2
2024-05-31
Matlab中的GNRM存档算法代码
该软件包提供了论文“通过结合基因表达和基因突变数据来推断基因网络重新布线”的Matlab代码README文件:涂俊杰,L.Ou-Yang,XH Hu和XF Zhang(2018)。该档案包含几个文件夹:(1)代码:用于解决GNRM模型的源代码。(2)模拟:使用模拟数据测试我们的方法的演示。在文件夹“simulation”中运行“Demo_simulation.m”以测试算法。(3)卵巢癌:使用卵巢癌基因表达数据测试我们方法的演示。在文件夹“Ovarian cancer”中运行“Demo_Ovarian.m”以测试算法。请不要犹豫与屠佳娟联系寻求任何澄清关于档案的任何内容或操作。联系方式:涂家娟,华中师范大学数学与统计学院,武汉430079。
Matlab
0
2024-08-12
MATLAB中基于模糊聚类算法的图像分割
介绍了利用MATLAB实现图像分割的模糊聚类算法,其中包括经典的FCM算法以及内核化FCM(KFCM)方法。该方法允许用户自定义内核函数,以实现更灵活的图像分割。
Matlab
2
2024-05-30
PAPR降低OFDM选择性映射技术MATLAB代码
此MATLAB代码对比了OFDM系统在传统实现和使用选择性映射技术降低PAPR的两种情况下的性能。改进的OFDM系统采用选择性映射技术设计,以降低传统OFDM系统的PAPR。通过BER和CCDF图比较了改进后的OFDM系统和传统的OFDM系统的性能。
Matlab
2
2024-05-20
MATLAB数组排序代码——Python实现选择性搜索
MATLAB排序代码选择性搜索的英文全称Python完整实现。我详细阅读了相关论文和作者的MATLAB实现。与其他实现相比,我的方法真实地展示了原始论文的思想。此外,该方法逻辑清晰,注释丰富,非常适合教学目的,帮助新手理解选择性搜索的基本原理和练习代码的阅读能力。安装建议:可以通过以下方式安装最新版本:$ pip install selective-search或者从GitHub获取最新版本:$ git clone https://github.com/ChenjieXu/selective_search.git $ cd selective_search $ python setup.py install或通过conda安装:conda install -c chenjiexu selective_search。
Matlab
2
2024-07-17
基于快速聚类的髙维数据特征选择算法
这篇论文探讨了一种针对高维数据的特征选择算法,该算法利用快速聚类技术提高效率,为数据挖掘领域的学者和实践者提供了有价值的参考。
数据挖掘
2
2024-05-25
基于主动数据选择的半监督聚类算法研究
近年来,基于主动数据选择的半监督聚类技术成为数据挖掘和机器学习领域的研究热点。该技术通过利用少量标签数据,显著提高了聚类精度。然而,现有的半监督聚类算法在处理大规模数据时仍面临挑战。
数据挖掘
2
2024-07-18