这是一个简易版的蚂蚁算法程序,模拟蚂蚁在寻找最优路径时的行为。
一种蚂蚁算法的软件-AntSystem_7z.zip
相关推荐
Jaya一种创新的优化算法
介绍了一种简单但强大的优化算法,适用于解决有约束和无约束的优化问题。所有基于进化和群体智能的算法都是概率算法,需要共同的控制参数,如种群规模、世代数、精英规模等。不同的算法除了共同的控制参数外,还需要特定的算法参数。例如,GA使用变异概率、交叉概率和选择算子;PSO使用惯性权重、社会和认知参数;ABC使用围观蜂数、雇佣蜂数、侦察蜂数和限制数;HS算法使用和声记忆考虑率、音调调整率和即兴次数。其他算法如ES、EP、DE、SFL、ACO、FF、CSO、AIA、GSA、BBO、FPA、ALO、IWO等也需要对各自的特定参数进行优化。算法特定参数的适当调整对算法性能非常关键,而不当的调整可能导致计算量增加或局部最优解。为解决这一问题,Rao等人(2011)引入了基于教学的优化(TLBO)算法,该算法无需特定于算法的参数,只需要通用的控制参数,如种群大小。
Matlab
0
2024-09-25
探索图论算法: 一种基于 Matlab 的方法
探索图论算法: 一种基于 Matlab 的方法
本资源深入研究图论算法领域,并提供基于 Matlab 的实践方法。内容涵盖经典算法(如最短路径、最小生成树)以及网络流和匹配等高级主题。通过实际示例和 Matlab 代码实现,帮助读者掌握将理论应用于实际问题。
Matlab
9
2024-05-23
HyperLog:一种近似最优基数估计算法的分析
HyperLog 算法在基数估计领域展现出接近最优的性能。本研究深入分析 HyperLog 算法的运行机制,揭示其如何在有限的内存资源下,高效地估计大型数据集的基数。
算法与数据结构
3
2024-05-21
支持向量机数据挖掘中的一种关键算法
支持向量机(Support Vector Machine,简称SVM)是机器学习领域中广泛应用的监督学习模型,主要用于分类和回归分析。其核心思想是通过寻找最优的超平面,将不同类别的数据最大程度地分开。这个超平面被称为最大间隔分类器,通过引入核函数如多项式核、高斯核(RBF)、Sigmoid核等,将低维空间的数据映射到高维空间,有效解决了非线性可分问题。支持向量是离超平面最近的训练样本,对确定超平面的位置至关重要。SVM通过软间隔处理噪声或异常值,允许一定数量的误分类样本,提高了模型的鲁棒性和泛化能力。优化过程中采用拉格朗日乘子法处理约束优化问题,并转化为对偶形式以便处理高维大规模数据集。在实际应用中,SVM被广泛应用于文本分类、图像识别和生物信息学等领域。
数据挖掘
2
2024-07-18
Moth Swarm Algorithm (MSA)一种新型元启发算法
Moth Swarm Algorithm (MSA):灵感来源于飞蛾对月光的导向。该算法引入了两种创新优化算子:(1)基于种群多样性的交叉点动态选择策略,利用差异向量Lévy-mutation提升侦察阶段的探索能力;(2)集成即时记忆的联想学习机制,模拟飞蛾的短期记忆,解决经典粒子群算法的初始速度问题。此代码演示了MSA在23个常用基准测试中的应用。详细信息参见Mohamed等人(2017)的研究:“使用蛾群算法的最优潮流”。
Matlab
1
2024-08-01
FP增长算法:一种高效的频繁项集挖掘技术
FP增长算法是一种用于发现频繁项集的数据挖掘技术,它摒弃了传统的“产生-测试”范式,而是利用一种名为FP树的紧凑数据结构来组织数据,并直接从FP树中提取频繁项集。
数据挖掘
2
2024-05-16
一种创新的医学图像处理算法探索 (2007年)
提出了一种基于小波变换和多尺度积局部区域统计量的新型图像融合算法,简称为MPLVDDWT算法。在图像融合过程中,利用多尺度积实现了有效的去噪,有助于突出融合图像的细节特征。作者采用熵和标准偏差等统计评价指标,验证了算法在保留原始图像信息的同时,增强了图像的细节信息。实验结果显示,该方法在医学图像处理中具有显著的应用潜力。
统计分析
3
2024-07-16
数据挖掘技术一种高效的最大频繁模式挖掘算法
挖掘最大频繁模式是数据挖掘中的核心问题之一。提出了一种快速算法,利用前缀树压缩数据存储,通过优化节点信息和节点链,直接在前缀树上采用深度优先策略进行挖掘,避免了传统条件模式树的创建,显著提升了挖掘效率。
数据挖掘
2
2024-07-20
研究论文-一种自然聚类发现的新算法.pdf
当前的聚类方法如K-means和DBSCAN采用全局参数,难以准确发现数据的自然聚类结构。新提出的分级聚类算法CluFNC通过调整网格大小、噪声阈值和神经节点数量,能够在数据空间中精确识别内部聚类特征。该算法首先根据参数划分数据空间网格,然后利用高斯影响函数计算每个单元的场强,接着运用SOM算法对网格位置和场强进行聚类,最后通过Chameleon算法对SOM聚类得到的神经网络节点权值进行最终的数据空间聚类映射。理论和实验结果表明,该算法能有效发现数据中的自然聚类特性。
数据挖掘
2
2024-07-31