挖掘最大频繁模式是数据挖掘中的核心问题之一。提出了一种快速算法,利用前缀树压缩数据存储,通过优化节点信息和节点链,直接在前缀树上采用深度优先策略进行挖掘,避免了传统条件模式树的创建,显著提升了挖掘效率。
数据挖掘技术一种高效的最大频繁模式挖掘算法
相关推荐
一种高效挖掘最大频繁模式的新算法(2006年)
挖掘最大频繁模式是多种数据挖掘应用中的关键问题。提出一种新算法,利用前缀树压缩数据存储,并通过深度优先策略直接在前缀树上进行挖掘,避免了条件模式树的创建,大幅提升了挖掘效率。该算法调整节点信息和节点链,采用高效的策略处理数据集,以应对大规模数据挖掘的需求。
数据挖掘
0
2024-08-31
FP增长算法:一种高效的频繁项集挖掘技术
FP增长算法是一种用于发现频繁项集的数据挖掘技术,它摒弃了传统的“产生-测试”范式,而是利用一种名为FP树的紧凑数据结构来组织数据,并直接从FP树中提取频繁项集。
数据挖掘
2
2024-05-16
一种用于挖掘频繁模式的高性能算法:LPS-Miner
我们提出了一种名为 LPS-Miner 的高效数据挖掘算法,用于挖掘事务数据库中的频繁模式。LPS-Miner 算法基于模式增长原理,并采用了...
数据挖掘
3
2024-05-27
一种创新的基于N-list的频繁项集挖掘算法
频繁项集的挖掘是数据挖掘中的核心问题之一,在多个关键数据挖掘任务中至关重要。引入了一种名为N-list的新型垂直数据表示形式,灵感源自于类似FP-tree的编码前缀树(PPC-tree)。N-list存储了频繁项集的关键信息,通过该数据结构,我们提出了一种高效的挖掘算法PrePost,能够有效地发现所有的频繁项集。PrePost算法的高效性源于几个关键因素:N-list的紧凑性,基于交集的项目支持计数转换,以及利用N-list的单路径属性直接发现频繁项集。我们在多种真实和合成数据集上对PrePost算法进行了实验评估,并与四种先进算法进行了比较,结果显示PrePost算法在大多数情况下表现最优。尽管在处理稀疏数据集时会消耗更多内存,但其速度仍然超群。
数据挖掘
2
2024-07-27
频繁模式挖掘算法:观测研究
频繁模式挖掘在数据挖掘中扮演着关键角色,存在多种算法。本研究探索了模式连续挖掘中算法相关的主要问题和挑战。
数据挖掘
5
2024-05-25
支持向量机数据挖掘中的一种关键算法
支持向量机(Support Vector Machine,简称SVM)是机器学习领域中广泛应用的监督学习模型,主要用于分类和回归分析。其核心思想是通过寻找最优的超平面,将不同类别的数据最大程度地分开。这个超平面被称为最大间隔分类器,通过引入核函数如多项式核、高斯核(RBF)、Sigmoid核等,将低维空间的数据映射到高维空间,有效解决了非线性可分问题。支持向量是离超平面最近的训练样本,对确定超平面的位置至关重要。SVM通过软间隔处理噪声或异常值,允许一定数量的误分类样本,提高了模型的鲁棒性和泛化能力。优化过程中采用拉格朗日乘子法处理约束优化问题,并转化为对偶形式以便处理高维大规模数据集。在实际应用中,SVM被广泛应用于文本分类、图像识别和生物信息学等领域。
数据挖掘
2
2024-07-18
数据挖掘一种启发式方法
《数据挖掘:一种启发式方法》是由Hussein A. Abbass、Ruhul A. Sarker与Charles S. Newton合作编写的专业著作,于2002年由Idea Group Publishing出版。本书探讨了如何运用启发式技术解决数据挖掘中的挑战,涵盖了启发式算法的理论基础、数据预处理、特征选择与降维、分类与聚类算法、关联规则挖掘以及异常检测与预测等内容。作者通过多个实践案例展示了理论如何应用于实际项目,为读者提供了宝贵的方法论和见解。
数据挖掘
0
2024-09-13
一种基于算法适用知识的数据挖掘算法交互选择系统
为解决普通用户难以为特定数据挖掘任务选择最佳算法的难题,本研究提出了一种基于算法适用知识的交互式系统。该系统将数据挖掘算法的适用知识形式化,并以此设计了算法选择交互问题和选择逻辑。与以往研究相比,该系统更易于实现,并能适应算法的动态添加,有效地帮助用户选择合适的挖掘算法。
数据挖掘
4
2024-05-27
金融时序数据频繁模式挖掘算法研究
金融时序数据蕴含着丰富的市场信息,有效挖掘其中的频繁模式对于预测市场趋势、防范金融风险具有重要意义。然而,金融时序数据具有高噪声、高维度的特点,传统频繁模式挖掘算法难以有效应用。
针对上述问题,重点研究面向金融时序数据的快速频繁模式挖掘算法。首先,对金融时序数据进行预处理,降低噪声干扰并提取关键特征;其次,设计高效的频繁模式挖掘算法,降低算法时间复杂度,提高挖掘效率;最后,通过实验验证所提算法在金融时序数据集上的有效性和效率。
的研究成果预期能够为金融市场分析提供新的技术支持,推动金融风险防控和智能决策的发展。
数据挖掘
1
2024-06-11