为解决普通用户难以为特定数据挖掘任务选择最佳算法的难题,本研究提出了一种基于算法适用知识的交互式系统。该系统将数据挖掘算法的适用知识形式化,并以此设计了算法选择交互问题和选择逻辑。与以往研究相比,该系统更易于实现,并能适应算法的动态添加,有效地帮助用户选择合适的挖掘算法。
一种基于算法适用知识的数据挖掘算法交互选择系统
相关推荐
探索图论算法: 一种基于 Matlab 的方法
探索图论算法: 一种基于 Matlab 的方法
本资源深入研究图论算法领域,并提供基于 Matlab 的实践方法。内容涵盖经典算法(如最短路径、最小生成树)以及网络流和匹配等高级主题。通过实际示例和 Matlab 代码实现,帮助读者掌握将理论应用于实际问题。
Matlab
9
2024-05-23
数据挖掘技术一种高效的最大频繁模式挖掘算法
挖掘最大频繁模式是数据挖掘中的核心问题之一。提出了一种快速算法,利用前缀树压缩数据存储,通过优化节点信息和节点链,直接在前缀树上采用深度优先策略进行挖掘,避免了传统条件模式树的创建,显著提升了挖掘效率。
数据挖掘
2
2024-07-20
支持向量机数据挖掘中的一种关键算法
支持向量机(Support Vector Machine,简称SVM)是机器学习领域中广泛应用的监督学习模型,主要用于分类和回归分析。其核心思想是通过寻找最优的超平面,将不同类别的数据最大程度地分开。这个超平面被称为最大间隔分类器,通过引入核函数如多项式核、高斯核(RBF)、Sigmoid核等,将低维空间的数据映射到高维空间,有效解决了非线性可分问题。支持向量是离超平面最近的训练样本,对确定超平面的位置至关重要。SVM通过软间隔处理噪声或异常值,允许一定数量的误分类样本,提高了模型的鲁棒性和泛化能力。优化过程中采用拉格朗日乘子法处理约束优化问题,并转化为对偶形式以便处理高维大规模数据集。在实际应用中,SVM被广泛应用于文本分类、图像识别和生物信息学等领域。
数据挖掘
2
2024-07-18
Jaya一种创新的优化算法
介绍了一种简单但强大的优化算法,适用于解决有约束和无约束的优化问题。所有基于进化和群体智能的算法都是概率算法,需要共同的控制参数,如种群规模、世代数、精英规模等。不同的算法除了共同的控制参数外,还需要特定的算法参数。例如,GA使用变异概率、交叉概率和选择算子;PSO使用惯性权重、社会和认知参数;ABC使用围观蜂数、雇佣蜂数、侦察蜂数和限制数;HS算法使用和声记忆考虑率、音调调整率和即兴次数。其他算法如ES、EP、DE、SFL、ACO、FF、CSO、AIA、GSA、BBO、FPA、ALO、IWO等也需要对各自的特定参数进行优化。算法特定参数的适当调整对算法性能非常关键,而不当的调整可能导致计算量增加或局部最优解。为解决这一问题,Rao等人(2011)引入了基于教学的优化(TLBO)算法,该算法无需特定于算法的参数,只需要通用的控制参数,如种群大小。
Matlab
0
2024-09-25
一种创新的基于N-list的频繁项集挖掘算法
频繁项集的挖掘是数据挖掘中的核心问题之一,在多个关键数据挖掘任务中至关重要。引入了一种名为N-list的新型垂直数据表示形式,灵感源自于类似FP-tree的编码前缀树(PPC-tree)。N-list存储了频繁项集的关键信息,通过该数据结构,我们提出了一种高效的挖掘算法PrePost,能够有效地发现所有的频繁项集。PrePost算法的高效性源于几个关键因素:N-list的紧凑性,基于交集的项目支持计数转换,以及利用N-list的单路径属性直接发现频繁项集。我们在多种真实和合成数据集上对PrePost算法进行了实验评估,并与四种先进算法进行了比较,结果显示PrePost算法在大多数情况下表现最优。尽管在处理稀疏数据集时会消耗更多内存,但其速度仍然超群。
数据挖掘
2
2024-07-27
FP增长算法:一种高效的频繁项集挖掘技术
FP增长算法是一种用于发现频繁项集的数据挖掘技术,它摒弃了传统的“产生-测试”范式,而是利用一种名为FP树的紧凑数据结构来组织数据,并直接从FP树中提取频繁项集。
数据挖掘
2
2024-05-16
一种高效挖掘最大频繁模式的新算法(2006年)
挖掘最大频繁模式是多种数据挖掘应用中的关键问题。提出一种新算法,利用前缀树压缩数据存储,并通过深度优先策略直接在前缀树上进行挖掘,避免了条件模式树的创建,大幅提升了挖掘效率。该算法调整节点信息和节点链,采用高效的策略处理数据集,以应对大规模数据挖掘的需求。
数据挖掘
0
2024-08-31
一种用于挖掘频繁模式的高性能算法:LPS-Miner
我们提出了一种名为 LPS-Miner 的高效数据挖掘算法,用于挖掘事务数据库中的频繁模式。LPS-Miner 算法基于模式增长原理,并采用了...
数据挖掘
3
2024-05-27
Vibes:一种基于特征关系和信息量的集成学习算法
Vibes算法通过分析特征之间的关系和信息量,构建了一个高效的多数投票集成学习模型。
算法核心步骤:
特征关系判定: 判断特征之间是相互依赖还是相互独立。
信息量计算与排序: 在特征相互依赖的情况下,计算每个特征的信息量并降序排序。
优化假设构建: 利用前向搜索算法,根据特征信息量排序结果,从基础学习器假设中选择最优假设,构建最终假设。
实验结果:
Vibes算法在 33 个数据集上展现出优异的分类性能,平均准确率高达 89.80%,最低也能达到 78.03%。实验数据采用 .arff (WEKA) 格式。
Matlab
2
2024-05-28