我们利用QR分解来计算矩阵的特征值。这一方法是迭代的,并生成一个上三角矩阵,特征值即为该矩阵的对角元素。我们的发现显示,这些特征值与Matlab内置函数eig计算结果一致。您可以在以下链接中找到类似用Mathematica实现的程序:http://library.wolfram.com/infocenter/MathSource/6612/
QR分解计算特征值的应用与Matlab开发
相关推荐
matlab教程特征值分解详解
matlab教程中,特征值分解函数eig()用于计算符号方阵的特征值和特征向量。具体使用方法包括:使用E = eig(A)来求解符号方阵A的特征值E;使用[v,E] = eig(A)来求解符号方阵A的特征值E和对应的特征向量v。
Matlab
0
2024-08-22
使用QR方法计算矩阵特征值——MySQL性能优化与架构设计学习笔记
为了更直观地反映特征值随迭代次数增加的收敛情况,在程序设计中直接展示了特征值的图像表现(见图7.6)。从图7.6可以看出,在开始几次迭代中可能会出现一些波动,但随着迭代次数增加,特征值逐渐趋于稳定。总体而言,QR方法是一种非常有效的矩阵特征值计算方法。
Matlab
0
2024-09-28
MATLAB 特征值分析:计算左右特征向量和参与因子
该 MATLAB 程序提供了一种有效的方法来计算特征值分析中的左右特征向量和参与因子。它可以有效地处理不同规模和复杂度的矩阵,并生成准确可靠的结果。该程序以交互式方式运行,用户可以轻松输入矩阵并获取特征向量和参与因子的计算结果。
Matlab
3
2024-05-31
数值计算中的主特征值与特征向量分析
数值计算中,通过主特征值和特征向量的乘幂法与反乘幂法进行分析。
Matlab
0
2024-08-24
Matlab实现矩阵特征值与特征向量计算方法综述
这篇资源详细介绍了在Matlab中实现矩阵特征值与特征向量计算的多种方法,包括幂法、反幂法、位移反幂法、雅可比方法、豪斯霍尔德方法、实对称矩阵的三对角化、QR方法以及求根位移QR方法。内容涵盖了实验报告和例题分析,为数值分析和数值代数领域的学习者提供了丰富的学习资料。这些资源不仅全面,而且经过整理和优化,确保能够满足专业学术需求。
Matlab
4
2024-07-20
matlab实现特征值计算癫痫预测挑战Kaggle竞赛解析
本存储库包含了我在Kaggle上参与美国癫痫协会癫痫发作预测挑战时使用的matlab代码。由于清理代码后的影响,提交结果可能会有所不同。尽管得分不高,但展示了我在遗传算法和随机特征蒙版方面的探索,同时还介绍了乔纳森·塔普森的线性回归方法。对于具体代码的进一步了解,可能需要大约100-150GB的可用磁盘空间。详细内容可参见main.py、genetic.py和ensemble.py。
Matlab
0
2024-10-01
特征值界估计方法
本章将探讨特征值界估计方法,并以映射概念作为基础。映射是集合之间的一种对应关系,对于给定集合 S 和 T,S 到 T 的映射 η 将 S 中的每个元素 α 唯一对应到 T 中的元素 β。
S 中元素 α 在映射 η 下的像记为 η(α)。
S 在映射 η 下的像集 Im η 包含所有 S 中元素在映射下的像,即 Im η = {η(α) ∣ α ∈ S}。
元素 β 的原像集 η−(β) 包含所有映射到 β 的 S 中元素,即 η−(β) = {α ∈ S ∣ η(α) = β}。
算法与数据结构
2
2024-05-31
对矩阵A的前行进行QR分解和奇异值分解Matlab教程
在这个教程中,我们将对矩阵A的前4行进行QR分解和奇异值分解。接着,我们计算矩阵A的特征根和对应的特征向量,以确定矩阵A是否可对角化。最后,我们计算矩阵A的指数、开平方和余弦值,并且计算每个元素的指数、开平方和余弦值(单位为度)。这些步骤将帮助您深入理解矩阵A在数学上的各种运算。
Matlab
2
2024-07-18
熵值法MATLAB代码优化-有界特征值的优化(optWBoundEigenval)
熵值法MATLAB代码优化(optWBoundEigenval)有界特征值的优化
作者:亚当·桑德勒 日期:1/28/21
主要步骤和文件说明:
配置适当的参数文件(/params/中的示例)。
使用参数文件作为输入,运行main.py。
/文件夹/params/包含以下内容:
asymmetric_valley.py:非对称谷优化器(经过修改)。
cifar100_data.py:CIFAR-100数据的加载器。
cifar10_data.py:CIFAR-10数据的加载器。
cmd.py:用于GPU跟踪(来自)。
cov_shift_acc_comp.R:比较精度斜率与协变量平移的L1-范数。
cov_shift_plots.R:生成精度与协变量平移的L1-范数的关系图。
cov_shift_test.py:协变量平移特征的测试模型。
dcnn.py:修改后的数据加载器和神经网络(NN),用于胸部X射线数据。
dnet.py:修改后的DenseNet实现。
densitynet.py:DenseNet的实现(来自)。
forest_data.py:森林覆盖类型数据加载器和模型。
Matlab
0
2024-11-06