DeepLab v2是一种先进的深度学习系统,专为语义图像分割而设计。它整合了粗糙卷积以有效控制深度神经网络中的特征响应分辨率,粗糙空间金字塔池则稳健地分割多个尺度的对象视图。此外,密集连接的条件随机字段(CRF)后处理提升了分割质量。本发行版提供了ICLR'15实验支持,是一个完全开放的实现。用户只需调整旧的prototxt文件以适配更新。例如,我们的膨胀卷积(在CAFFE中称为圆环卷积)的参数仍然是“dilation”,用法保持一致。在与Caffe层的argmax和softmax_loss层的交互中,需要留意一些细微差异。更多详细信息,请参阅原论文:@article{CP2016Deeplab, title={DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs}, ...