这是一个简化版本的双层卷积神经网络代码示例,展示了深度学习中的基础技术应用。
简化的双层卷积神经网络代码示例
相关推荐
Matlab代码墙纸分类的卷积神经网络应用
项目3说明:截止日期为3月2日,您将使用Matlab内置的CNN训练功能,对17,000张256x256灰度墙纸图像进行分类。学习如何扩充数据、构建CNN并进行训练。数据集存放在“数据/墙纸/ <火车,测试> //”文件夹中,分为训练和测试图像两部分。第一步是培训和测试CNN,入门代码提供了卷积神经网络示例。
Matlab
0
2024-08-27
BP神经网络MATLAB代码示例
这份MATLAB代码展示了BP神经网络的实现方法,适合初学者学习和实践,不依赖图形界面。
算法与数据结构
2
2024-05-19
Two-Layer-CNN-on-MNIST-master深度学习中的双层卷积神经网络实现
Two-Layer-CNN-on-MNIST-master是一份matlab程序源码,专注于构建双层卷积神经网络用于MNIST数据集的特征提取。该程序通过深度学习方法对图像数据进行高效分类和特征识别。
Matlab
0
2024-08-22
keras卷积神经网络参数计算
利用keras框架,了解卷积神经网络原理,并掌握每一层训练参数的计算方法。
算法与数据结构
4
2024-04-30
BP神经网络应用示例
应用BP神经网络实现两类模式分类
定义训练参数:隐含层节点数、输出维度、训练次数、激活函数
Matlab
4
2024-05-13
Matlab深度学习测试卷积神经网络代码实现
在深度学习导论课上,使用Matlab实现了卷积神经网络的代码,最终完成了手写数字识别作业。
Matlab
0
2024-08-12
基于卷积神经网络的图像分类算法综述
生成5个随机数排列的列向量,一般用这种格式poissrnd(2,5) 生成5行5列的随机数矩阵poissrnd(2,[5,4]) 生成一个5行4列的随机数矩阵。这里介绍了如何通过逆CDF函数法生成服从特定分布的随机数,以柯西分布为例。
Matlab
3
2024-07-30
matlab精度检验代码-countingAMDCN实现的图像对象计数卷积神经网络
这是一个包含AMDCN(聚合的多列膨胀卷积网络)实现的存储库,专用于图像中对象的计数任务。AMDCN的架构由五个平行的列组成,每列通过扩张卷积和一个最终的聚合器生成特征,输出最终的密度图。网络在UCSD、UCF50和TRANCOS数据集上的输出示例展示了其在人群和交通数据集上的应用。
Matlab
2
2024-07-26
基于Matlab的神经网络代码
这是一份基于Matlab编写的神经网络代码示例。
Matlab
1
2024-07-28