这是一个包含AMDCN(聚合的多列膨胀卷积网络)实现的存储库,专用于图像中对象的计数任务。AMDCN的架构由五个平行的列组成,每列通过扩张卷积和一个最终的聚合器生成特征,输出最终的密度图。网络在UCSD、UCF50和TRANCOS数据集上的输出示例展示了其在人群和交通数据集上的应用。
matlab精度检验代码-countingAMDCN实现的图像对象计数卷积神经网络
相关推荐
基于Intel架构的深度神经网络精度检验
本项目基于 Intel Xeon 和 Xeon Phi 架构实现了深度神经网络的训练和精度检验。项目实现了并行的堆叠自动编码器和受限玻尔兹曼机 (RBM) 训练算法,并结合 Softmax 分类器神经网络进行精度评估。
算法实现:
采用斯坦福大学深度学习教程提供的 Matlab 框架实现堆叠自动编码器。
使用 Steepest Descent 算法计算梯度。
平台支持:
支持 Intel Xeon 多核平台和 Intel Xeon Phi 多核平台。
Xeon Phi 平台需使用 -mmic 编译选项编译程序。
可通过修改源代码和 consts.h 文件中的 OpenMP 参数优化 Xe
Matlab
13
2024-05-31
Statlie图像处理器的高光谱图像分类基于并行神经网络的MATLAB精度检验代码
Statlie图像处理器描述了BASS(Band-Adaptive Spectral-Spatial)架构,这是一种用于高光谱图像分类的并行深度神经网络系统。该项目由印度技术学院的研究人员提出,应对高光谱图像长时间训练和推理所带来的能耗挑战。BASS-Net已使用TensorFlow和Keras重新实现,并针对FPGA进行了优化,使用NVIDIA TitanX GPU进行训练。这些技术改进显著减少了处理时间和能耗。未来,该技术可能扩展至自然语言处理和系统验证领域。
Matlab
10
2024-07-22
Matlab代码墙纸分类的卷积神经网络应用
项目3说明:截止日期为3月2日,您将使用Matlab内置的CNN训练功能,对17,000张256x256灰度墙纸图像进行分类。学习如何扩充数据、构建CNN并进行训练。数据集存放在“数据/墙纸/ <火车,测试> //”文件夹中,分为训练和测试图像两部分。第一步是培训和测试CNN,入门代码提供了卷积神经网络示例。
Matlab
8
2024-08-27
基于简单卷积神经网络的模式识别精度评估
本代码使用MATLAB实现了一个简单的卷积神经网络(CNN)模型,并对其在模式识别任务上的精度进行了评估。
代码结构:
数据加载与预处理
CNN模型构建
模型训练
精度评估指标计算 (例如: 准确率、精确率、召回率等)
结果可视化 (例如: 混淆矩阵、ROC曲线等)
使用方法:
将代码文件下载至本地MATLAB工作路径。
修改代码中数据加载路径及相关参数。
运行代码。
注意:
代码需要安装MATLAB深度学习工具箱。
可以根据实际需求修改网络结构和参数。
Matlab
9
2024-06-01
Matlab深度学习测试卷积神经网络代码实现
在深度学习导论课上,使用Matlab实现了卷积神经网络的代码,最终完成了手写数字识别作业。
Matlab
8
2024-08-12
简化的双层卷积神经网络代码示例
这是一个简化版本的双层卷积神经网络代码示例,展示了深度学习中的基础技术应用。
数据挖掘
5
2024-09-16
使用多列卷积神经网络进行人群计数
MindSpark Hackathon 2018利用MCNN在ShanghaiTech数据集上进行人群计数。这是CVPR 2016论文“通过多列卷积神经网络进行单图像人群计数”的非正式实施。预测工作正在进行中,同时进行热图生成。安装Tensorflow、Keras和OpenCV,并克隆此存储库以使用预训练模型。您可以从以下位置下载ShanghaiTech数据集:投寄箱://www.dropbox.com/s/fipgjqxl7uj8hd5/ShanghaiTech.zip dl
Matlab
6
2024-08-01
基于卷积神经网络的图像分类算法综述
生成5个随机数排列的列向量,一般用这种格式poissrnd(2,5) 生成5行5列的随机数矩阵poissrnd(2,[5,4]) 生成一个5行4列的随机数矩阵。这里介绍了如何通过逆CDF函数法生成服从特定分布的随机数,以柯西分布为例。
Matlab
10
2024-07-30
基于FPGA的卷积神经网络图像分类设计
本项目利用FPGA实现一个训练好的卷积神经网络,用于图像分类。项目采用CIFAR-10数据集作为训练数据,通过深度学习的CNN概念对输入图像进行分类。
设计包含六个层次:滑动窗口卷积、ReLU激活、最大池化、图像展平、全连接和Softmax激活。利用卷积核/过滤器从输入图像中提取特征,输入图像可以是灰度或彩色图像。
使用的工具:
Xilinx Vivado v17.4:用于FPGA设计
Matlab vR2018.a:用于参考目的和结果比较
使用的编程语言:
Verilog HDL:用于FPGA设计的硬件描述语言
已完成的任务:
掌握FPGA、相关资源、Vivado 17.4和Mat
Matlab
9
2024-05-20