DeepLab v2 是一种先进的语义图像分割深度学习系统,它基于深度卷积神经网络,并结合了以下关键特性:
- 粗糙卷积: 精确控制特征响应分辨率。
- 粗糙空间金字塔池: 采用多采样率和有效视场的滤波器,实现多尺度对象的稳健分割。
- 密集连接的条件随机字段 (CRF): 用于后期处理,优化分割结果。
此版本提供了关键模型组件的公开实现,并支持 ICLR'15 中 DeepLab v1 的实验。
圆环卷积:
圆环卷积在 CAFFE 框架中称为膨胀卷积,使用方法相同,只需将卷积参数 “hole” 更改为 “dilation”。
Argmax 和 Softmax_loss 层:
ICCV'15 实验中的 argmax 和 softmax_loss 层与 Caffe 层略有不同,详细信息请参考相关论文。
参考文献:
@article{CP2016Deeplab,
title={DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous},
author={...}}