量子遗传算法结合了量子计算和遗传算法的优点,特别适用于复杂多峰连续函数的优化问题。传统的量子遗传算法在这些问题上可能会陷入局部最优解或收敛速度较慢,为了克服这些问题,提出了一种改进型量子遗传算法(Novel Improved Quantum Genetic Algorithm,NIQGA)。该算法通过动态调整量子门的旋转角度θ,加速了收敛速度,并引入优体交叉策略以增强局部搜索能力。改进型量子遗传算法的优势在于能够有效提高全局寻优效率,避免陷入局部极值。文章首先介绍了量子遗传算法的基本机制,包括种群更新和染色体交叉,然后详细描述了改进型算法中的动态策略和优体交叉策略的应用。测试结果表明,该算法在复杂连续函数优化中表现出了较快的收敛速度和优秀的局部搜索能力。