改进型算法
当前话题为您枚举了最新的 改进型算法。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
基于改进型 Ziggurat 算法的高效伪随机数生成器
介绍了一种基于改进型 Ziggurat 算法的快速伪随机数生成器 (PRNG) 实现,用于生成指数分布和正态分布的随机数。
实现语言: C/C++, Fortran, Python, Matlab
源代码: exponential.h 和 normal.h
使用方法:* C/C++: 将源代码文件所在目录添加到编译器的路径中,并参考 Benchmarks/profile.c 文件中的示例进行使用。* Fortran: 采用GNU Fortran编译。* Python: 使用 pip install fast_prng 命令安装。模块函数的使用方法与 NumPy 中同名函数类似。* M
Matlab
9
2024-06-17
改进的增强型卡尔曼滤波算法研究
这篇研究源自一位教师对卡尔曼滤波的详细介绍,及其对改进的增强型算法的探讨。
算法与数据结构
7
2024-08-09
Apriori算法改进研究
研究关联规则算法在数据挖掘中的地位
分析Apriori算法的核心原理
探讨Apriori算法在关联规则研究中的应用
提出Apriori算法的一种新改进方法
数据挖掘
12
2024-04-30
Raft算法改进优化
对Raft分布式一致性算法进行多项修改,提高其性能和吞吐量。
算法与数据结构
13
2024-05-26
Apriori算法改进及应用
数据挖掘通过从海量数据中提取关联信息,揭示数据的潜在价值。Apriori算法是关联规则挖掘中常用的方法,本研究对其进行改进并实现,以提高关联规则挖掘的效率和准确性。
数据挖掘
10
2024-04-30
增强型粒子滤波算法
本资源提供了一种改进的粒子滤波算法,着重于识别和利用高质量粒子。算法根据权重对粒子进行排序,舍弃低权重粒子(概率分布函数高于0.5)。高权重粒子则根据其权重进行采样。在权重与概率分布函数介于0.5之间的粒子上进行均匀采样,以捕捉大多数粒子的趋势,实现更快速、更精确的目标跟踪,并降低目标丢失的可能性。
算法与数据结构
7
2024-05-20
CSMA/CD算法推导与改进
通过MATLAB仿真Aloha和非坚持CSMA/CD算法,可以推导出坚持CSMA/CD算法并进行改进。
Matlab
11
2024-04-30
改进后的Apriori算法实现
这段代码是对网络上的Apriori算法进行了修改,以确保在Python 3版本中能够正常运行。
算法与数据结构
7
2024-07-18
Apriori算法的改进及应用
Apriori算法的改进及应用####一、简介近年来,随着技术的发展,数据量的急剧增加促使了数据挖掘技术的发展,从海量数据中智能提取有价值信息以辅助决策。数据挖掘作为人工智能和数据库领域的研究热点,关联规则挖掘是其重要组成部分,而频繁项目集的发现则至关重要。 ####二、Apriori算法及其局限性Apriori算法是关联规则挖掘中的经典算法之一,其核心思想是利用频繁项集特性,通过多次数据库扫描确定频繁项集,进而生成关联规则。然而,Apriori算法存在扫描次数多和候选生成开销大的问题。 ####三、ZSApriori算法的优势为了解决Apriori算法的局限性,ZSApriori算法提出。相
数据挖掘
8
2024-08-09
Kmeans聚类算法改进研究.pdf
Kmeans算法在模式识别和数据挖掘等领域应用广泛。针对高维度数据聚类效果差的问题,李森林和蒋启明提出了一种改进方法。
数据挖掘
14
2024-04-30