在机器学习领域,生成候选集与频繁项集是重要的步骤。如果项集支持度计数不符合条件,如A,B,D和B,C,E,就不属于C3。具体的项集支持度计算显示,A,Bt4t、A,Ct4t、A,Et2t、B,Ct4t、B,Dt2t、B,Et2t是常见的组合。对于2-项集和3-项集的频繁计算,也是非常关键的。
机器学习算法总结ppt候选集与频繁项集的生成
相关推荐
Apriori算法:频繁项集挖掘与关联规则学习
Apriori算法是一种用于数据挖掘的经典算法,其核心目标是发现数据集中频繁出现的项集以及学习部分关联规则。
算法特点:
迭代式方法: Apriori算法采用逐层迭代的方式,从单个频繁项开始,逐步生成更大的频繁项集。
支持度阈值: 通过设定最小支持度阈值,筛选出满足条件的频繁项集,有效控制结果数量。
关联规则生成: 基于频繁项集,Apriori算法可以推导出“一对多”或“多对一”形式的部分关联规则。
局限性:
无法处理多对多关联规则: Apriori算法目前版本仅支持生成一对多或多对一形式的关联规则,对于更复杂的多对多关联规则尚待改进。
数据挖掘
1
2024-05-24
基于有向项集图的最大频繁项集挖掘算法
本算法基于有向项集图存储事务数据库中频繁项集信息,采用三叉链表结构组织有向项集图,并在此基础上提出最大频繁项集挖掘算法。该算法一次扫描事务数据库,有效减少I/O开销,适用于稀疏和稠密数据库的最大频繁项集挖掘。
数据挖掘
2
2024-05-31
KNN算法的机器学习应用总结ppt
KNN算法是机器学习领域中的一种经典算法,它通过测量不同特征值之间的距离进行分类。该算法简单有效,适用于各种数据集类型,特别是在数据样本较少的情况下表现突出。通过选择适当的邻居数量(K值),KNN算法能够提供高准确度的分类和预测。
算法与数据结构
2
2024-07-16
最大频繁项集快速更新算法FUMFS
FUMFS算法优化了最大频繁项集的维护,利用已有BitMatrix和最大频繁项集,有效地更新挖掘结果。
数据挖掘
4
2024-05-12
机器学习中的线性回归算法总结PPT
线性回归是机器学习中最基础也是最常见的算法之一,用于分析房屋销售数据等各种应用场景。
算法与数据结构
2
2024-07-17
逻辑回归算法综述 - 机器学习PPT总结
逻辑回归是一种常见的机器学习算法,通常用于处理二分类问题。它通过拟合数据集中的观测数据来预测分类变量的可能性。逻辑回归广泛应用于医学、金融和市场预测等领域。
算法与数据结构
0
2024-08-22
生成候选集C-数据挖掘技术分析
由L1产生候选集C2:项集{I1,I2},{I1,I3},{I1,I4},{I1,I5},{I2,I3},{I2,I4},{I2,I5},{I3,I4},{I3,I5},{I4,I5}。
Hadoop
0
2024-11-01
并行频繁项集挖掘算法的优化研究
传统的挖掘频繁项集的并行算法存在节点间负载不均衡、同步开销过大、通信量大等问题。针对这些挑战,提出了一种名为多次传送重新分配数据的并行算法(MRPD)。在MRPD算法中,第l步将数据库重新划分成多个组,并根据各节点的需求多次传送这些组。各节点在异步地计算完整组后,可以得到所有频繁项集。理论分析和实验结果均表明,MRPD算法在优化并行频繁项集挖掘中具有显著效果。
数据挖掘
2
2024-07-16
L产生候选集C
L1产生候选集C2:
项集
{I1,I2}{I1,I3}{I1,I4}{I1,I5}{I2,I3}{I2,I4}{I2,I5}{I3,I4}{I3,I5}{I4,I5}
数据挖掘
4
2024-05-26