由L1产生候选集C2:项集{I1,I2},{I1,I3},{I1,I4},{I1,I5},{I2,I3},{I2,I4},{I2,I5},{I3,I4},{I3,I5},{I4,I5}。
生成候选集C-数据挖掘技术分析
相关推荐
Apriori候选集生成机制数据挖掘应用
由 L1 生成候选集 C2 的操作,其实在挖频繁项集时挺关键。你可以理解成,用之前的结果组合出新的项集。像{I1, I2}、{I2, I5}这种两两组合,就是 Apriori 里最基础的一步。逻辑不难,核心是穷举+剪枝,搭配频率判断,挺实用的一招。
Apriori 算法的思路其实比较直白:先搞出L1,一路往上迭代出L2、L3。每一轮的候选集(像C2)都从上一轮的频繁项集来组合。效率不算高,但胜在稳定靠谱。
如果你对频繁项集这块感兴趣,下面这几个资料还挺值得翻翻:
Apriori 频繁项集挖掘算法 —— 基础全,建议先看
候选集与频繁项集的生成(PPT) —— 图文清晰,适合快速理解
算法与数据结构
0
2025-07-02
L产生候选集C
L1产生候选集C2:
项集
{I1,I2}{I1,I3}{I1,I4}{I1,I5}{I2,I3}{I2,I4}{I2,I5}{I3,I4}{I3,I5}{I4,I5}
数据挖掘
13
2024-05-26
候选序列生成:基于关联分析的数据挖掘方法
在数据挖掘领域,关联分析是一种重要技术,而候选序列生成是关联分析中的关键步骤。
为了有效地生成候选序列,一种常见的方法是合并频繁的较短序列。具体来说,通过合并两个频繁的 (k-1)-序列,可以产生候选的 k-序列。
为了避免重复生成候选序列,可以采用类似于 Apriori 算法的策略。例如,只有当两个 (k-1)-序列的前 k-2 项相同时,才进行合并操作。
以下示例演示了如何通过合并频繁 3-序列来生成候选 4-序列:
合并 <{1 2 3}> 和 <{2 3 4}>,得到 <{1 2 3 4}>。
由于事件 3 和事件 4 属于第二个序列的不同元素,因此它们在合并后
算法与数据结构
16
2024-05-23
机器学习算法总结ppt候选集与频繁项集的生成
在机器学习领域,生成候选集与频繁项集是重要的步骤。如果项集支持度计数不符合条件,如A,B,D和B,C,E,就不属于C3。具体的项集支持度计算显示,A,Bt4t、A,Ct4t、A,Et2t、B,Ct4t、B,Dt2t、B,Et2t是常见的组合。对于2-项集和3-项集的频繁计算,也是非常关键的。
算法与数据结构
9
2024-08-19
数据挖掘技术比较与分析
在算法参数控制和扩展功能选项方面的对比显示,Enterprise Miner和PRW在参数控制方面表现较为出色,而Intelligent Miner在此方面则表现不足。大多数产品提供了对决策树的实数值处理和图形展示等扩展功能,但只有Clementine和Scenario较好地实现了树的修剪选项功能。此外,神经网络的扩展功能也存在显著差异。
Hadoop
14
2024-07-13
数据挖掘技术及其应用分析
扫描D,对每个候选项进行计数,生成C1:项集支持度计数{I1} 6 {I2} 7 {I3} 6 {I4} 2 {I5} 2
数据挖掘
9
2024-07-15
Python数据挖掘与分析技术分享
Python数据挖掘与数据分析技术在CSDN博客的详细介绍,涵盖了Python 3.x版本的算法实现,包括数据挖掘、机器学习和文本挖掘。文章帮助读者掌握最新版本的Python应用技巧,欢迎阅读和交流!
数据挖掘
14
2024-10-14
数据挖掘技术及应用比较分析
黑色简洁风格的导航菜单挺常见,数据挖掘工具里的比较和也算老生常谈,但这里有几个资源用着还不错。Enterprise Miner 的参数控制做得比较细,你要改模型参数,比如调优神经网络,操作挺灵活。PRW 也差不多,配置界面直观,点几下就能切换。Intelligent Miner 在参数调整上就有点欠火候,嗯,想要深度定制会不太顺手。不过它在决策树可视化上表现还行,基本功能都给你配好了,响应也快。Clementine 和 Scenario 在树的修剪上体验蛮好,你如果要对模型做简化,可以直接用它们的可视化界面,少写代码,省事。想看例子?可以去瞅瞅这篇数据挖掘决策树。神经网络扩展功能差异也挺,Ra
算法与数据结构
0
2025-06-29
数据挖掘技术与应用现状分析
数据挖掘技术及其应用现状探析
一、数据挖掘技术概述
数据挖掘 (Data Mining, DM) 是从海量、不完整、有噪声、模糊、随机的数据集中提取出隐含的、未知的、有潜在用处的信息和知识的过程。随着大数据和信息技术的发展,这项技术变得越来越重要。
二、数据挖掘过程
数据挖掘过程通常可以分为以下几个阶段:
数据准备:这是数据挖掘的第一步,包含数据选取和数据预处理两个子步骤。
数据选取:根据用户需求从原始数据库中选取目标数据。
数据预处理:包括数据清洗、缺失值处理、异常值检测、数据转换和数据归约等。 例如,通过数据清洗去除噪声数据,通过数据转换将连续型数据转换为离散型数据等。
数据挖掘:
数据挖掘
17
2024-11-06