支持度计算
当前话题为您枚举了最新的 支持度计算。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
偏度峰度计算工具
偏度峰度检验法计算器,用于计算偏度和峰度。
统计分析
4
2024-04-30
关联规则度量:支持度和可信度
规则度量支持度和可信度可用于找出符合最小支持度和可信度条件的规则。
支持度衡量一次交易中同时包含规则中所有项的可能性。
可信度衡量在包含规则中前提项的交易中,结论项出现的条件概率。
例如,若最小支持度为 50%,最小可信度为 50%,则可能获得以下规则:
A → C (支持度:50%,可信度:66.6%)
C → A (支持度:50%,可信度:100%)
这意味着:
购买尿布的客户中有 50% 同时购买了啤酒。
购买尿布和啤酒的客户中有 66.6% 同时购买了啤酒。
购买啤酒的客户中有 50% 同时购买了尿布。
购买尿布和啤酒的客户中有 100% 同时购买了尿布。
算法与数据结构
2
2024-04-30
计算图像相似度的Matlab程序
该程序通过计算互信息、均方根误差、峰值信噪比和交叉熵等四个统计学参数,来评估两幅图像之间的相似度。
Matlab
0
2024-09-26
数据挖掘中支持度递减的关联规则探索
在数据挖掘领域,支持度递减是一个重要的概念。它指的是随着数据集中项目集的大小增加,支持度递减的规则开始显现。这一现象揭示了在大数据背景下关联规则的变化模式。
数据挖掘
1
2024-07-25
MATLAB图像对比度计算方法
MATLAB提供了多种计算图像对比度的方法,其中包括直方图均衡化和对比度增强等技术。
Matlab
0
2024-08-29
从数据库D生成项集支持度计数
通过扫描数据库D,统计每个候选项出现的次数,得到项集支持度计数C1如下:
| 项集 | 支持度 ||---|---|| {I1} | 6 || {I2} | 7 || {I3} | 6 || {I4} | 2 || {I5} | 2 |
数据挖掘
3
2024-05-12
设置最小支持度阈值数据挖掘应用流程解析
设定最小支持度阈值为2。以下为各交易号及其项集合:
T100: I1, I2, I5
T200: I2, I4
T300: I2, I3
T400: I1, I2, I4
T500: I1, I3
T600: I2, I3
T700: I1, I3
T800: I1, I2, I3, I5
T900: I1, I2, I3
通过这些数据,可以在挖掘分析中找出频繁项集并计算各项集的支持度,进而有效支持关联规则生成。
算法与数据结构
0
2024-10-25
计算一维时间序列偏度和峭度的简易Matlab程序
这是一个简单的Matlab程序,用于计算一维时间序列的偏度和峭度值,特别适合初学者使用。程序设计简洁明了,方便他人直接应用。
Matlab
0
2024-09-29
基于Matlab的图像相似度计算方法
介绍了一种利用Matlab进行图像相似度计算的方法。该方法可以有效地量化两幅图像之间的相似程度,并可应用于图像检索、目标识别等领域。
Matlab
2
2024-05-30
自然语言处理的相似度计算实现
随着技术的发展,自然语言处理(NLP)在计算机科学中扮演着重要角色。
算法与数据结构
0
2024-09-14