示例:利用DMQL语言定义雪花模式,创建立方体销售雪花[时间、商品、分支、位置]:销售额 = 美元销售总额之和,平均销售额 = 美元销售总额的平均数,销售单位数 = 总数定义维度时间为(时间键、星期几、月份、季度、年份)定义维度商品为(商品键、商品名称、品牌、类型、供应商(供应商键、供应商类型))定义维度分支为(分支键、分支名称、分支类型)定义维度位置为(位置键、街道、城市(城市键、省或州、国家))。
使用DMQL定义雪花模式的浙大大数据讲解
相关推荐
事实星座模式示例:解读浙大大数据
事实星座模式示例:以销售数据为例
销售事实表(Sales Fact Table)
| 字段名 | 描述 ||---|---|| time_key | 时间维度键 || item_key | 商品维度键 || branch_key | 分支机构维度键 || location_key | 地理位置维度键 || units_sold | 销售数量 || dollars_sold | 销售额 || avg_sales | 平均销售额 |
运输事实表(Shipping Fact Table)
| 字段名 | 描述 ||---|---|| time_key | 时间维度键 || item_key
Memcached
13
2024-05-12
浙大大数据分类系统详解
数据挖掘系统的分类涵盖了一般功能、描述性数据挖掘和预测性数据挖掘等不同视角。根据挖掘的数据库类型、知识类型、技术使用和应用等多个维度进行分类。
Memcached
7
2024-07-20
浙大数据集成讲解
数据集成与模式集成
数据集成是指将来自多个数据源的数据整合到一个统一的存储中,而模式集成则是整合不同数据源的元数据,为数据集成提供基础。
实体识别与数据冲突
实体识别是指匹配来自不同数据源的现实世界实体,例如将数据源A中的“cust-id”与数据源B中的“customer_no”匹配。
在数据集成过程中,需要检测并解决数据值的冲突。同一实体在不同数据源中的属性值可能存在差异,其原因可能是不同的数据表示方式或度量标准等。
Memcached
13
2024-05-12
使用DMQL定义星型模式实例解析
本例使用DMQL定义星型模式,其中:- 维度:时间、产品、分支机构、位置- 度量:销售额总和、销售额平均值、销售单元数通过对各维度的定义,建立了一个用于分析销售数据的星型模式。
Memcached
14
2024-05-29
多种数据挖掘的视角-浙大关于大数据的讲解
根据不同数据库分类,包括关系数据库、事务数据库、流式数据等,以及多种知识类型的分析和方法集成,涵盖面向数据库的挖掘、数据仓库、OLAP、机器学习等技术,应用于金融、电信、欺诈分析等领域。
Memcached
8
2024-07-18
浙大关于大数据的探索性选择方法讲解
探索性选择方法(td)涉及到2d个可能的子集。t逐步向前选择,从空属性集开始,选择原属性集中最好的属性,并将其添加到该集合中,重复该步骤。t逐步向后删除,从整个属性集开始,每一步都删除当前属性集中的最坏属性。t向前选择和向后删除相结合,每一步选择一个最好的属性,并删除一个最坏的属性。可以使用临界值来确定上述三种方法的结束条件。t最终形成归纳树。
Memcached
12
2024-07-31
浙大数据挖掘教程
浙大数据挖掘课件助您掌握数据挖掘技能。
数据挖掘
11
2024-05-13
星型模式实例:浙江大学大数据讲解案例
星型模式实例:Sales 事实表
事实表: Sales Fact Table
| 列名 | 描述 ||--------------|----------------|| time_key | 时间维度主键 || item_key | 商品维度主键 || branch_key | 分店维度主键 || location_key | 地理位置维度主键 || units_sold | 销售数量 || dollars_sold | 销售额 || avg_sales | 平均销售
Memcached
15
2024-05-12
销售数据仓库的雪花模式及其应用概述
销售数据仓库的雪花模式是一种高效的数据存储结构,通过细分维度和规范化存储,提升了数据管理和查询效率。
Oracle
7
2024-08-30