根据不同数据库分类,包括关系数据库、事务数据库、流式数据等,以及多种知识类型的分析和方法集成,涵盖面向数据库的挖掘、数据仓库、OLAP、机器学习等技术,应用于金融、电信、欺诈分析等领域。
多种数据挖掘的视角-浙大关于大数据的讲解
相关推荐
浙大关于大数据的探索性选择方法讲解
探索性选择方法(td)涉及到2d个可能的子集。t逐步向前选择,从空属性集开始,选择原属性集中最好的属性,并将其添加到该集合中,重复该步骤。t逐步向后删除,从整个属性集开始,每一步都删除当前属性集中的最坏属性。t向前选择和向后删除相结合,每一步选择一个最好的属性,并删除一个最坏的属性。可以使用临界值来确定上述三种方法的结束条件。t最终形成归纳树。
Memcached
2
2024-07-31
浙大关于大数据的元数据解析
大数据领域中,元数据与数据相辅相成,共同构建数据仓库的模型结构。元数据主要描述数据模型的结构信息。在数据仓库中,元数据的重要用途包括:作为目录,帮助决策支持系统分析数据仓库内容;作为数据仓库与操作性数据库间的映射标准;指导细节数据与稍加综合数据之间的汇总算法,以及指导稍加综合数据与高度综合数据之间的汇总算法。
Memcached
0
2024-08-10
浙大关于大数据的解析和下载
数值区域的自然划分可以使数据更加直观和易于理解。按照3-4-5规则,根据数据集的极值分布,我们将数值区域划分为不同的等宽子区间,以便更好地呈现数据分布情况。例如,对于年薪的划分,我们采用了【10,000~20,000】,【20,000~30,000】,【30,000~40,000】等区间,这种自然划分方法能够有效避免数据分析结果的扭曲。
Memcached
0
2024-10-12
浙大数据集成讲解
数据集成与模式集成
数据集成是指将来自多个数据源的数据整合到一个统一的存储中,而模式集成则是整合不同数据源的元数据,为数据集成提供基础。
实体识别与数据冲突
实体识别是指匹配来自不同数据源的现实世界实体,例如将数据源A中的“cust-id”与数据源B中的“customer_no”匹配。
在数据集成过程中,需要检测并解决数据值的冲突。同一实体在不同数据源中的属性值可能存在差异,其原因可能是不同的数据表示方式或度量标准等。
Memcached
3
2024-05-12
浙大关于数据立方体有效计算的探索
数据立方体可以被看作是一个方体的格局。最底层的方体是基本方体,最顶端的方体(顶点)只包含一个单元的值。对于一个n维的数据立方体,每维L层,可能产生的方体总数是多少?数据立方体的物化有三种方式:预先计算所有方体(全物化)、不预先计算任何“非基本”方体(不物化)、有选择的计算一个适当子集的方体(部分物化)。在确定物化哪些方体时,需要考虑工作负荷下的查询频率及其开销等因素。
Memcached
2
2024-07-30
多种数据挖掘算法的实施方式
这是我在课程设计中收集整理的资料,涵盖了多种数据挖掘算法的实施方法,对于数据挖掘领域具有实际应用意义,希望能对您有所帮助。
SQLServer
0
2024-08-17
浙大数据挖掘教程
浙大数据挖掘课件助您掌握数据挖掘技能。
数据挖掘
4
2024-05-13
使用DMQL定义雪花模式的浙大大数据讲解
示例:利用DMQL语言定义雪花模式,创建立方体销售雪花[时间、商品、分支、位置]:销售额 = 美元销售总额之和,平均销售额 = 美元销售总额的平均数,销售单位数 = 总数定义维度时间为(时间键、星期几、月份、季度、年份)定义维度商品为(商品键、商品名称、品牌、类型、供应商(供应商键、供应商类型))定义维度分支为(分支键、分支名称、分支类型)定义维度位置为(位置键、街道、城市(城市键、省或州、国家))。
Memcached
2
2024-07-27
大数据集的挖掘——数据挖掘新视角
互联网和电子商务的普及带来了大量的数据集,这些数据成为数据挖掘的宝贵资源。本书侧重于解决数据挖掘中关键问题的实用算法,即使是处理最大数据集也能游刃有余。首先讨论了Map-Reduce框架,这是自动并行化算法的重要工具。作者详解了局部敏感哈希和流处理算法的技巧,用于处理数据量过大而无法进行详尽处理的情况。接着介绍了PageRank算法及其在组织网络信息中的应用技巧。其他章节涵盖了发现频繁项集和聚类的问题。最后几章分别讨论了推荐系统和网络广告的应用,这两者在电子商务中至关重要。本书由数据库和网络技术领域的两位权威专家撰写,无论对学生还是从业者都是必读之作。
算法与数据结构
1
2024-07-15