互联网和电子商务的普及带来了大量的数据集,这些数据成为数据挖掘的宝贵资源。本书侧重于解决数据挖掘中关键问题的实用算法,即使是处理最大数据集也能游刃有余。首先讨论了Map-Reduce框架,这是自动并行化算法的重要工具。作者详解了局部敏感哈希和流处理算法的技巧,用于处理数据量过大而无法进行详尽处理的情况。接着介绍了PageRank算法及其在组织网络信息中的应用技巧。其他章节涵盖了发现频繁项集和聚类的问题。最后几章分别讨论了推荐系统和网络广告的应用,这两者在电子商务中至关重要。本书由数据库和网络技术领域的两位权威专家撰写,无论对学生还是从业者都是必读之作。
大数据集的挖掘——数据挖掘新视角
相关推荐
数据挖掘新视角探索毒蘑菇数据集
数据挖掘是信息技术领域的关键分支,涉及从大数据中发现有价值的信息和知识。在这个案例中,我们专注于“毒蘑菇数据集”,这是一个广泛应用于大数据分析和机器学习任务的标准样本集。数据集中的“agaricus-lepiota.data”文件核心部分包含了不同蘑菇种类的详细信息,特别是区分毒蘑菇和可食用蘑菇的特征,如颜色、形状、气味和生长环境等。每行代表一个观测样本,列对应不同的特征值,支持各类分类模型的训练,如决策树、随机森林、支持向量机和神经网络。此外,“Index”文件提供了压缩包内各文件的简要描述,便于用户快速定位和理解文件用途。而“agaricus-lepiota.names”文件详细描述了每个特征的含义,为数据理解和预处理提供重要参考。README文件则提供了数据集的详细信息,包括数据来源、收集方法、预处理步骤及使用注意事项。扩展文件“expanded.Z”可能包含更多样本或附加信息,增强数据集的训练效果。毒蘑菇数据集不仅适用于机器学习初学者,也为专家提供优化算法和评估模型性能的实践机会。
数据挖掘
0
2024-08-05
模式矩阵数据挖掘技术的新视角
模式矩阵通常采用矢量表示数据对象,每个矢量在多维空间中描述对象的多方面特征。每个维度代表一个特征,多个对象的矢量形成模式矩阵(Pattern Matrix),即(xij)mn。每行表示一个对象,每列描述一个特征。这种方法在数据挖掘中具有重要应用价值。
Hadoop
1
2024-07-15
数据挖掘与约束编程的全新视角
这本电子书讨论了数据挖掘的最新技术与约束编程的经典理论,是一部高清的英文版经典著作。
数据挖掘
0
2024-10-21
大数据安全分析的新视角
传统的防御措施已无法完全应对恶意攻击者,安全分析逐渐成为业界关注的焦点。在大数据、安全智能、情景感知、威胁情报、数据挖掘和可视化技术的支持下,安全分析师们拥有了更多应对挑战的手段。将深入探讨安全分析的背景理念及其在实践中的应用。
数据挖掘
1
2024-07-18
大数据集挖掘.pdf
这本书是由安纳德·拉贾拉曼和杰夫·乌尔曼多年来在斯坦福大学开设的一门为期一个季度的课程的教材演变而来。这门名为“网络挖掘”的课程CS345A原本是设计为高级研究生课程,但现在也对高年级本科生开放并且颇具吸引力。随着尤尔·莱斯科维奇加入斯坦福大学教职,我们对材料进行了大幅重新组织。他引入了一门新的课程CS224W,专注于网络分析,并且在CS345A中添加了新的内容,该课程已经更名为CS246。三位作者还推出了一门大规模数据挖掘项目课程CS341。本书现在包含了这三门课程中教授的内容。
算法与数据结构
1
2024-07-25
大数据处理的全新视角
这本书由韩国知名数据库专家李华植撰写,详细介绍了多维度的大数据处理技术方案,是一本高质量的技术著作。
Oracle
0
2024-09-29
并行数据处理云计算与数据挖掘的新视角
并行数据处理(ETL)操作分为普通和链式两类,涵盖清洗、转换、集成、计算、抽样、集合、更新等八大类。这些技术在云计算和数据挖掘领域中扮演重要角色,支持大规模数据处理和分析需求。
数据挖掘
2
2024-07-15
大数据与人类行为预测的新视角
艾伯特-拉斯洛·巴拉巴西在其著作《爆发:大数据时代预见未来的新思维》中,通过探讨大数据和人类行为模式,展示了一种基于数据和算法分析的新方法。巴拉巴西是网络科学的先驱之一,他的研究涵盖社会网络、复杂性理论、网络动力学及数据挖掘等多个领域。他认为,尽管历史不会完全重复,但其中存在可预测的模式和节奏,这些模式可以通过数据分析发现和预测。书中还讨论了“爆发理论”,即一种分析行为数据的科学方法,以及大数据技术如何改变我们理解世界的方式。通过收集和分析海量数据,人们可以更准确地预见社会动态和个人行为,从而在商业、公共政策及个人生活中提升决策效果。然而,巴拉巴西也强调,随着数据使用的增加,必须重视个人隐私权保护,避免数据滥用。
算法与数据结构
0
2024-10-12
数据挖掘第二版(韩家炜)新视角解读
数据挖掘核心概念与技术详解####一、引言《数据挖掘:概念与技术》是一本由韩家炜教授及其合著者所著的经典教材,自2000年问世以来一直被视为学习数据挖掘领域的不可或缺之作。本书深入浅出地介绍了数据挖掘的基本原理和技术,并广泛涵盖了其应用场景,帮助读者从海量数据中提取有价值信息的能力。####二、数据挖掘概述1. 数据挖掘的定义与重要性:数据挖掘是从大量数据中自动或半自动地提取出未知、有效且可理解模式的过程,其重要性在于帮助企业和组织更好地理解和利用数据资产,从而做出更明智的决策。2. 数据挖掘的应用范围:数据挖掘可以应用于各种数据类型,包括关系数据库、数据仓库、事务数据库和高级数据库系统等,每种数据类型具有独特特性和挑战,因此需要不同的挖掘技术和方法。3. 数据挖掘的功能:数据挖掘的功能包括概念/类描述、关联分析、分类与预测、聚类分析、离群点分析及演变分析等,这些功能帮助用户识别数据中的模式和趋势。 - 概念/类描述:描述特定类别的数据特征及其与其他类别的差异。 - 关联分析:揭示不同变量之间的联系,如市场篮子分析。 - 分类与预测:通过建立模型来预测未来数据的行为或结果。 - 聚类分析:将相似的对象分组,有助于发现数据集内的结构。 - 离群点分析:识别不符合常规模式的数据点,可用于欺诈检测等领域。 - 演变分析:跟踪数据随时间的变化趋势。####三、数据仓库与OLAP技术1. 数据仓库简介:数据仓库是一种支持业务智能和决策支持系统的中心化数据存储库,收集来自多个源的数据,并将其转换为统一格式,以便于分析和报告。2. OLAP技术:在线分析处理(OLAP)是数据仓库中最常用的技术之一,允许用户快速执行复杂的分析操作,如聚合、切片和切块等。3. 多维数据模型:多维数据模型是OLAP的核心,通常采用星型、雪花型或事实星座等模式组织数据。4. OLAP操作:OLAP提供多种操作,如钻取、切片和切块等,使用户能够灵活地探索数据的不同视图。5. 数据仓库的系统结构:数据仓库的结构通常包括三层:数据源层、数据仓库层和前端工具层,确保数据的一致性和完整性。
数据挖掘
0
2024-09-25