并行数据处理(ETL)操作分为普通和链式两类,涵盖清洗、转换、集成、计算、抽样、集合、更新等八大类。这些技术在云计算和数据挖掘领域中扮演重要角色,支持大规模数据处理和分析需求。
并行数据处理云计算与数据挖掘的新视角
相关推荐
并行数据处理(ETL)在云计算与数据挖掘中的重要性
并行数据处理(ETL)操作分为普通ETL和链式ETL,涵盖清洗、转换、集成、计算、抽样、集合、更新等多个类别,在云计算和数据挖掘中扮演着关键角色。
数据挖掘
2
2024-07-17
大数据处理的全新视角
这本书由韩国知名数据库专家李华植撰写,详细介绍了多维度的大数据处理技术方案,是一本高质量的技术著作。
Oracle
0
2024-09-29
基于云平台的并行数据挖掘方法探索
近年来,随着技术的进步和数据量的急剧增加,业界已经开始利用云平台处理海量高维数据。将各种异构系统仿真为一个统一的系统,特别是在Hadoop环境中进行数据挖掘时,面临着数据模型的全局性、HDFS文件的随机写操作以及数据生命周期短等挑战。为了解决这些问题,提出了基于Hadoop的高效数据挖掘框架,利用数据库模拟链表结构管理挖掘出的知识。该框架支持树形结构、图模型的分布式计算方法,实现了统计算法如Yscore分箱算法、决策树和KD树的建树算法,并利用Vega云对Hadoop集群进行了仿真。实验结果显示,该框架和算法在实际应用中具有可行性,也具备拓展至数据挖掘以外领域的潜力。
数据挖掘
0
2024-10-13
大数据集的挖掘——数据挖掘新视角
互联网和电子商务的普及带来了大量的数据集,这些数据成为数据挖掘的宝贵资源。本书侧重于解决数据挖掘中关键问题的实用算法,即使是处理最大数据集也能游刃有余。首先讨论了Map-Reduce框架,这是自动并行化算法的重要工具。作者详解了局部敏感哈希和流处理算法的技巧,用于处理数据量过大而无法进行详尽处理的情况。接着介绍了PageRank算法及其在组织网络信息中的应用技巧。其他章节涵盖了发现频繁项集和聚类的问题。最后几章分别讨论了推荐系统和网络广告的应用,这两者在电子商务中至关重要。本书由数据库和网络技术领域的两位权威专家撰写,无论对学生还是从业者都是必读之作。
算法与数据结构
1
2024-07-15
数据挖掘与约束编程的全新视角
这本电子书讨论了数据挖掘的最新技术与约束编程的经典理论,是一部高清的英文版经典著作。
数据挖掘
0
2024-10-21
使用Python进行数据处理和挖掘
Python数据分析环境搭建
推荐使用IPython Notebook: IPython Notebook在浏览器中运行,推荐使用Google Chrome浏览器。
Anaconda Python发行版: Anaconda Python发行版预装了Python和许多常用库,易于安装。请下载适合您系统的Anaconda版本。
其他有用的Python库:* BeautifulSoup* mrjob* pattern* seaborn
安装额外库:推荐使用命令行安装:pip install BeautifulSoup mrjob pattern seaborn
如果pip安装失败,可以下载源代码,并在源代码目录下运行:python setup.py install
在Unix机器上,以上命令可能需要使用sudo权限,例如:sudo pip install ... 或 sudo python ...
参考资料
《Python学习手册(第5版)》 - Mark Lutz
《利用Python进行数据分析》 - Wes McKinney
Kevin Sheppard 的相关著作
数据挖掘
5
2024-05-25
模式矩阵数据挖掘技术的新视角
模式矩阵通常采用矢量表示数据对象,每个矢量在多维空间中描述对象的多方面特征。每个维度代表一个特征,多个对象的矢量形成模式矩阵(Pattern Matrix),即(xij)mn。每行表示一个对象,每列描述一个特征。这种方法在数据挖掘中具有重要应用价值。
Hadoop
1
2024-07-15
云计算与数据挖掘的起源
云计算的发展史可以追溯到20世纪末,随着信息技术的快速进步,云计算逐渐成为现代数据管理和分析的重要工具。
数据挖掘
2
2024-07-15
数据挖掘新视角探索毒蘑菇数据集
数据挖掘是信息技术领域的关键分支,涉及从大数据中发现有价值的信息和知识。在这个案例中,我们专注于“毒蘑菇数据集”,这是一个广泛应用于大数据分析和机器学习任务的标准样本集。数据集中的“agaricus-lepiota.data”文件核心部分包含了不同蘑菇种类的详细信息,特别是区分毒蘑菇和可食用蘑菇的特征,如颜色、形状、气味和生长环境等。每行代表一个观测样本,列对应不同的特征值,支持各类分类模型的训练,如决策树、随机森林、支持向量机和神经网络。此外,“Index”文件提供了压缩包内各文件的简要描述,便于用户快速定位和理解文件用途。而“agaricus-lepiota.names”文件详细描述了每个特征的含义,为数据理解和预处理提供重要参考。README文件则提供了数据集的详细信息,包括数据来源、收集方法、预处理步骤及使用注意事项。扩展文件“expanded.Z”可能包含更多样本或附加信息,增强数据集的训练效果。毒蘑菇数据集不仅适用于机器学习初学者,也为专家提供优化算法和评估模型性能的实践机会。
数据挖掘
0
2024-08-05