2000年发表于《Science》杂志的Isomap算法Matlab代码,用于非线性数据降维,专注于维数约简。
非线性维数约简Isomap算法代码
相关推荐
Matlab代码实现Isomap降维技术——高效非线性数据压缩
Matlab编写的Isomap降维代码高效、精确地实现非线性降维,对于三维网格和各种点云图均适用。该代码利用连接附近点的方法创建图形,经过测试,适用于Matlab R2019a及以上版本的OSX和Windows 64位系统。用户可通过运行DEMO_detailed.m文件来查看详细演示,或者使用无注释的DEMO_only_code.m文件进行快速测试。为确保学术诚信,使用时请引用相关论文(1)和(2)。
Matlab
0
2024-09-27
MATLAB实现各种非线性编程算法非线性优化算法详解
MATLAB实现了多种非线性编程算法,包括但不限于非线性优化算法。这些算法在处理复杂问题时展现出卓越的性能和灵活性。
Matlab
3
2024-07-19
Matlab中的线性和非线性优化算法详解
介绍如何使用quadprog和mpcqpsolver解决各种线性和非线性规划问题。quadprog是一个经典的二次规划求解器,通过分析Matlab文档中的示例可以深入理解其应用。以下是一些实例:在quadprog中,通过设定目标函数和约束条件来优化变量值。mpcqpsolver是另一个强大的优化工具,特别适用于多变量控制问题。它结合了线性和二次规划求解技术,为复杂的优化任务提供了高效的解决方案。
Matlab
0
2024-08-05
粒子群算法求解非线性函数极值
这份资料提供了一种基于粒子群算法的非线性函数极值寻优方法,可以通过模拟粒子群体的行为来搜索问题的最优解。
算法与数据结构
2
2024-05-27
CIP法非线性方程的高级算法
在解决非线性方程时,我们采用了高级的CIP法,该方法分为非对流项和对流项两个步骤进行求解。
算法与数据结构
0
2024-09-20
非线性收敛灰狼优化算法MATLAB实现详解
优化求解:基于非线性收敛方式的灰狼优化算法MATLAB源码
提供了一个MATLAB源码,用于实现灰狼优化算法的非线性收敛方式。这种算法在传统灰狼优化算法基础上引入非线性参数调整,从而提高收敛速度和解的精度。
算法实现步骤
参数初始化:定义灰狼个体数量、迭代次数等基础参数。
非线性收敛参数:在传统的线性收敛策略上,引入非线性调整因子,通过函数设计控制收敛过程,使算法更加贴合实际优化问题。
灰狼寻优行为:通过捕猎和围猎行为模拟灰狼的进化策略,使种群逐渐趋向全局最优解。
结果可视化:运行结束后,提供解的迭代图和收敛曲线图,帮助直观观察算法的收敛效果。
代码片段示例
% 灰狼优化主函数
function GWO
% 参数设置
population_size = 30; % 灰狼数量
max_iter = 1000; % 最大迭代次数
% 初始化灰狼位置
positions = rand(population_size, dim); % 随机生成位置
% 主优化循环
for iter = 1:max_iter
% 更新非线性收敛参数
a = 2 - iter * (2 / max_iter);
... % 其他核心代码
end
end
效果评估
此优化方法在多个标准测试函数上表现良好,尤其是在高维非线性问题上有明显优势。通过非线性收敛因子,算法能更快达到全局最优解,且具有较高的稳定性。
总结
非线性收敛方式的引入为灰狼优化算法带来了显著的提升。该MATLAB源码实现提供了一种可靠的优化方案,适合多种实际问题的求解。
Matlab
0
2024-11-05
matlab编写代码实现非线性能量算子
matlab编写代码实现瞬时能量估算M文件,用于计算非线性能量算子,包括Teager-Kaiser运算符和频率加权瞬时能量。需要Matlab或Octave编程环境。更新(2019年9月):Python版本代码实现了相同的频率加权瞬时能量方法。详细介绍了Teager-Kaiser运算符及其在离散信号处理中的应用,以及希尔伯特变换的离散形式。参考文献提供了进一步的背景和实施细节。以下是一个简单的示例代码,生成两个正弦信号的Teager-Kaiser运算符和建议的包络-微分运算符:
% 生成两个正弦信号:
Matlab
0
2024-08-26
Python线性回归算法代码
提供Python机器学习中线性回归算法相关代码
统计分析
2
2024-05-20
非线性优化问题探讨
详细讨论了运筹学中的非线性优化问题,内容清晰易懂,适合于数学建模学习。此外,文中还包含了解决实际问题的代码示例。
Matlab
0
2024-08-26