Matlab Development: Robot Target Tracking Control Using Fuzzy Logic. This project involves using fuzzy logic with MatlabhW2K16 to develop a two-degree-of-freedom robotic arm for precise target tracking using image processing techniques.
Matlab Development Robot Target Tracking Control Using Fuzzy Logic
相关推荐
Matlab_Development_Robot_Position_Finder
Matlab开发 - Robot Position Finder。在棋盘上找到机器人的下毒,这是一个常见的机器人问题。
Matlab
0
2024-11-03
Tracking-Objects-Features-in-MATLAB-Using-OpenCV
This MATLAB script demonstrates how to track object features efficiently by leveraging OpenCV functions.
Steps to Implement:
Integrate OpenCV Functions: Ensure OpenCV is properly installed and configured with MATLAB for seamless integration.
Initialize Object Tracking: Define the object or region of interest to track.
Apply Feature Tracking: Use OpenCV functions like calcOpticalFlowPyrLK for feature tracking, optimizing speed and accuracy.
Key Points:
Ensure MATLAB supports the required OpenCV functions for smooth operation.
Test the script thoroughly to ensure compatibility with specific OpenCV versions.
This guide provides a step-by-step approach to effectively implement feature tracking in MATLAB using OpenCV functions.
Matlab
0
2024-11-05
Using StringBuffer for Fuzzy Queries in JDBC
在Java编程中,StringBuffer和JDBC(Java Database Connectivity)是两个非常重要的概念,特别是在处理大量数据和数据库操作时。将探讨如何结合StringBuffer来实现JDBC的模糊查询。
StringBuffer是Java中的一个类,提供了字符串操作的功能,尤其在多线程环境中。与String类不同,StringBuffer是线程安全的,因此在频繁修改字符串时,StringBuffer比String更高效。
在JDBC中,我们通常使用PreparedStatement来执行SQL语句,包括模糊查询。模糊查询通常涉及到SQL的LIKE关键字,配合通配符%来查找部分匹配的数据。PreparedStatement允许我们预编译SQL语句,提高执行效率并防止SQL注入攻击。
下面是一个结合StringBuffer和JDBC进行模糊查询的示例:
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
public class FuzzyQueryExample {
public static void main(String[] args) {
// 1. 加载数据库驱动
String url = \"jdbc:mysql://localhost:3306/mydb\";
String user = \"username\";
String password = \"password\";
// 2. 建立数据库连接
Connection conn = null;
try {
Class.forName(\"com.mysql.jdbc.Driver\");
conn = DriverManager.getConnection(url, user, password);
} catch (Exception e) {
e.printStackTrace();
}
}
}
MySQL
0
2024-11-03
MATLAB_Impedance_Control_2_Link_Robot_Arm
MATLAB Impedance Control for a 2-Link Robot Arm - User-interactive 2-link planar arm with a compliant controller and gravity compensation. The user can click and drag to move the end-effector's target position. Hit a keyboard key to change to disturbance-mode. This mode applies a disturbance force to the end-effector, allowing for real-time testing of the controller's response to external forces. The system provides an intuitive way to visualize impedance control and its interaction with the environment.
Matlab
0
2024-11-05
Octave Fuzzy Logic 工具箱 0.4.5 修复版
该工具箱解决了安装 Octave 时出现的代码问题,可直接安装使用。
算法与数据结构
1
2024-04-30
Fuzzy Adaptive PID Control for Inverted Pendulum in Simulink
模糊自适应PID单级旋转倒立摆稳定控制Simulink
Matlab
0
2024-11-04
EKF-Based Radar and Infrared Data Fusion for Multi-Target Tracking in MATLAB
本程序基于EKF(扩展卡尔曼滤波器)实现了雷达与红外数据的融合,采用状态向量融合和量测融合两种方法对多目标进行跟踪。通过结合雷达和红外传感器的观测数据,能够有效提高目标跟踪的准确性和可靠性。
状态向量融合方法通过将雷达与红外数据的状态信息结合,进行统一估计,优化目标位置与速度的估算。
量测融合方法则通过将雷达和红外传感器的测量数据进行融合,利用滤波器更新目标的状态,从而提高目标检测与跟踪的精度。
该MATLAB程序能够处理动态目标的跟踪任务,特别适用于复杂环境中的多目标检测与跟踪。
程序涉及的数据处理流程包括:数据预处理、滤波器初始化、状态更新、卡尔曼增益计算等关键步骤。
该程序不仅适用于雷达和红外系统的融合应用,也为基于传感器融合的目标跟踪算法提供了一个有效的实现框架。
Matlab
0
2024-11-05
Inverter Control for Constant Current Loads Using MATLAB
基于负载电流的控制器专为逆变器而设计。这是用于恒流负载应用。
Matlab
0
2024-11-04
MATLAB-DC Motor Speed Control Development
介绍了如何使用MATLAB进行直流电机的速度控制。通过编写控制算法,调整电机的输入信号,实现精确的速度调节。控制方法包括PID调节和PWM信号生成。此方法能够高效稳定地调节电机转速,适用于各种电机驱动应用场景。
Matlab
0
2024-11-06