Birch(聚类层次树)是一种用于大规模数据集的层次聚类算法,由加拿大滑铁卢大学的研究人员于1996年提出。该算法的主要特点是分层构建聚类特征,通过减少数据处理的复杂度,解决了传统聚类算法在大数据集上效率低下的问题。Birch算法的核心在于它的三元组表示法(CF,CS,N),分别代表特征向量、子聚类中心和子聚类样本数,有效地减少了存储和计算的需求。在数据表示方面,Birch算法将数据点表示为三元组CF,CS,N。CF是数据点与子聚类中心的特征向量差值的平方和;CS是子聚类中心;N是子聚类包含的数据点数量。算法从单个点开始,逐步合并子聚类,通过比较新加入点与现有子聚类的相似性,决定是否添加到子聚类或者创建新的子聚类。Birch算法构建了一个层次聚类树(CL树),每个内部节点表示一个子聚类,叶子节点表示原始数据点。在Python实现方面,需要对输入数据进行标准化或归一化,确保不同特征在同一尺度上。创建一个根节点作为初始空子聚类,并依次处理数据点,将每个点添加到CL树的适当子聚类。当所有数据点都被处理或满足特定停止条件时,停止添加节点。从CL树中提取最终的聚类结果,可以进一步使用谱聚类或层次聚类方法处理CL树的叶子节点。