数据挖掘是信息技术领域的重要分支,从大数据中提取有价值的信息和知识。BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies)算法作为一种高效、可扩展的无监督学习聚类方法,特别适用于大规模数据集。其核心思想是通过构建层次结构的聚类特征(CF)树来动态划分数据。算法的工作流程包括样本扫描、CF构造和簇生成三个主要阶段。BIRCH算法优势在于内存效率高、处理速度快,尤其适合在线聚类场景。但需注意在实际应用中对参数的敏感性及簇形状大小的影响。