DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的空间聚类算法,能够发现任意形状的聚类,并且对噪声不敏感。在Python中,可以利用Scikit-Learn库实现DBSCAN算法,该库提供了丰富的机器学习算法和数据预处理工具。DBSCAN算法的核心思想是通过定义“核心对象”来识别高密度区域,并将这些区域连接起来形成聚类。它不需要预先设定聚类的数量,而是根据数据分布自适应确定。具体步骤包括:选择未访问的对象、计算ε邻域、判断核心对象、扩展聚类以及处理边界对象和噪声。以下是Python实现DBSCAN算法的基本代码:from sklearn.cluster import DBSCAN import numpy as np
X = np.array([[1, 2], [2, 1], [2, 3], [3, 2], [1, 4], [4, 1], [4, 4]])
db = DBSCAN(eps=1.5, min_samples=3)
db.fit(X)
labels = db.labels_
print(\"Labels:\", labels)