DBSCAN聚类算法 MATLAB代码,包含测试数据,下载后即可直接运行。代码实现了DBSCAN算法的聚类功能,通过设置合适的参数,可以对不同类型的数据进行聚类分析。以下是MATLAB实现的代码:

?SCAN 算法实现
function [labels] = dbscan(X, epsilon, minPts)
    N = size(X, 1);
    labels = zeros(N, 1);
    clusterID = 0;
    for i = 1:N
        if labels(i) == 0 % 如果该点未被访问
            neighbors = regionQuery(X, i, epsilon);
            if length(neighbors) < minPts xss=removed xss=removed xss=removed xss=removed xss=removed xss=removed xss=removed xss=removed xss=removed xss=removed xss=removed xss=removed xss=removed>= minPts
                neighbors = [neighbors; currentNeighbors];
            end
        end
        i = i + 1;
    end
end

此代码可直接运行于MATLAB环境,用户可以通过提供不同的测试数据以及设置epsilon(邻域半径)和minPts(最小样本数)来进行聚类实验。

DBSCAN聚类算法在处理具有噪声和不同密度的数据时,表现出色,能够发现任意形状的簇。