由Aggarwal、Priya和Anubha Gupta提出的研究,探索了组级脑网络的组融合多元回归建模方法。该研究发表于2019年的《神经计算》期刊第363期,详细分析了MATLAB在该模型开发中的应用和实现。
MVRC脑网络的组融合多元回归建模与MATLAB开发
相关推荐
多元回归分析规范
多元线性回归模型:y = β0 + β1x1 + β2x2 + ... + βmxm + ε
样本多元线性回归方程:y = b0 + b1x1 + b2x2 + ... + bmxm
离回归平方和和回归平方和:SSy = Q y/12…m + U y/12…m
Matlab
6
2024-05-01
多元回归分析模型的应用与matlab实现
多元回归分析模型y = b0 + b1x1 + b2x2 + . . . bkxk + u,在matlab环境下得到了广泛的应用。
Matlab
0
2024-08-23
DFT研究预测HDAC7抑制活性的多元回归模型
本研究使用密度泛函理论(DFT)描述符,对18个异羟肟酸分子进行了QSAR分析,以预测其对组蛋白脱乙酰基酶7的抑制活性。研究采用了主成分分析(PCA)、上升层次分类(AHC)、线性多元回归(LMR)和非线性多元回归(NLMR)方法。通过DFT计算获得了异羟肟酸化合物的结构和性质信息。多元统计分析建立了两个量子描述子模型(MLR模型和MNLR模型),重点关注电子亲和力(AE)、OH键振动频率(ν(OH))和NH键振动频率(ν(NH))。LMR模型显示出良好的预测性能(R2 = 0.9659,S = 0.488,F = 85,p值
统计分析
0
2024-08-08
数据挖掘应用宝典多元回归方差分析与显著性检验
在数据挖掘领域,多元回归方差分析是分解t总离差平方和的重要工具,显著性检验则关注多元相关系数的回归离差平方和与偏相关系数。
数据挖掘
2
2024-07-13
快速高效的多元OLS回归分析Matlab开发详解
这个函数利用给定的回归变量在Matlab中执行标准的多元OLS回归。回归变量应为列向量,观察值应在行中提供。回归结果包括模型的系数、估计值和残差,分别存储在单独的矩阵中。与Matlab提供的标准回归代码相比,它具有更快的运行速度,并且在一个全面的位置提供更多信息,使用户可以轻松访问所需的所有信息。该函数无需额外安装统计工具箱即可运行。此外,它还提供了异方差一致的标准误差(White 1980),并且未来将进一步扩展以支持滚动窗口回归分析。
Matlab
0
2024-08-11
Matlab中的多元线性回归分析
多元线性回归分析是一种统计方法,探索多个自变量与因变量之间的关系,介绍了其基本原理及在Matlab中的实现方法。
Matlab
3
2024-07-30
使用Matlab开发贝叶斯自回归建模
Matlab开发贝叶斯自回归建模,涵盖了贝叶斯单变量自回归模型的规范和估计过程。
Matlab
1
2024-08-04
电力网络建模与分析的Matlab开发工具箱
Matlab开发了专用工具箱,用于在Q0参考框架中进行电力网络的建模和分析。工具箱支持对DQ0参考框架中的对称电网、发电机和负载的动力学进行详细分析。
Matlab
0
2024-09-14
数据融合MATLAB代码 - MRFN多尺度表示融合网络
此MATLAB代码实现了多尺度表示融合网络(MRFN),用于IEEE信号处理快报上发表的智能故障诊断论文。运行环境为Windows 7和Matlab R2014b。源数据来自凯斯西储大学(CWRU)的机械故障预防技术(MFPT)数据集。我们提供了CWRU数据集的Matlab文件“Sample_multi_array.mat”,您可以从百度Netdisk免费下载。如需使用代码,请参考以下步骤。如果您有任何问题,请联系Hui Yu或作者。
Matlab
0
2024-09-30