研究人员经常利用多个数据集进行可信的计量经济学和统计分析。为确保数据链接的可靠性,他们通常依赖于唯一标识符。然而,这种联系可能会泄露个人的敏感信息,因此数据管理者可能会删除私人数据集中的某些个人信息以保护隐私。数据管理员保留的信息仍然允许研究人员链接数据集,尽管可能会出现一些错误。k-匿名性是一个解决隐私与数据链接之间平衡的概念框架,在实践中有着广泛的应用。从研究人员和数据管理者的角度探讨了数据组合和估计任务,强调了k-匿名性对数据管理和研究的重要性及其影响。