针对泛化和微聚合在匿名化混合微数据上的缺陷,提出了MAGE算法,该算法结合均值向量和泛化值作为聚类质心,使用TSCKA算法匿名化混合数据。实验结果表明,与Incognito和KACA算法相比,MAGE算法在混合微数据匿名化上更有效。
混合数据语义保留K-匿名算法MAGE
相关推荐
K-均值算法测试数据集
用于K-均值算法测试的数据集,可包含各种特征和数据点,用于评估算法的聚类性能。
Hadoop
4
2024-05-20
数据隐私与数据效用的平衡关于k-匿名性的权衡说明
研究人员经常利用多个数据集进行可信的计量经济学和统计分析。为确保数据链接的可靠性,他们通常依赖于唯一标识符。然而,这种联系可能会泄露个人的敏感信息,因此数据管理者可能会删除私人数据集中的某些个人信息以保护隐私。数据管理员保留的信息仍然允许研究人员链接数据集,尽管可能会出现一些错误。k-匿名性是一个解决隐私与数据链接之间平衡的概念框架,在实践中有着广泛的应用。从研究人员和数据管理者的角度探讨了数据组合和估计任务,强调了k-匿名性对数据管理和研究的重要性及其影响。
统计分析
5
2024-07-17
基于 K-子空间的聚类算法
K-子空间算法是一种聚类方法,其思路类似于 K-均值算法,都可以将数据划分到不同的簇中。
Matlab
2
2024-05-30
k-均值(k-means)算法及其在Matlab中的实现
k-均值(k-means)算法是数据挖掘中常用的一种无监督学习方法,用于将数据点分组或聚类。它通过迭代过程将数据点分配到最近的聚类中心,并更新这些中心为所在簇内所有点的平均值。在Matlab中实现k-均值算法可以方便理解其工作原理,利用Matlab强大的数值计算能力进行高效实现。算法步骤包括:1. 初始化:随机选择k个初始聚类中心。2. 分配:计算数据点到各聚类中心的距离,分配到最近的中心所在簇。3. 更新:更新每个簇的中心为该簇内所有点的平均值。4. 迭代:重复分配和更新步骤,直到收敛或达到最大迭代次数。Matlab中的实现优势在于其简洁的语法和丰富的内置函数,例如pdist2和kmeans函数。
算法与数据结构
0
2024-09-14
深入k-均值聚类
这篇论文深入探讨了k-均值聚类算法,涵盖了其核心原理、算法步骤以及应用场景。此外,还分析了k-均值算法的优势和局限性,并讨论了如何优化算法性能,例如选择合适的k值和初始聚类中心点。
数据挖掘
4
2024-05-15
基于HBase和SimHash的大数据K-近邻算法优化
大数据K-近邻(K-NN)计算复杂度高,为解决此问题,提出一种基于HBase和SimHash的大数据K-近邻分类算法。该算法利用SimHash算法将大数据集映射到Hamming空间,得到哈希签名值集合。然后,将样例的行键与值的二元对存储到HBase数据库中,行键为样例的哈希签名值,值为样例的类别。对于测试样例,以其哈希签名值作为行键,从HBase数据库中获取所有样例的值,通过对这些值进行多数投票,得到测试样例的类别。与基于MapReduce的K-NN和基于Spark的K-NN相比,该算法在运行时间和测试精度方面均有优势。实验结果表明,在保持分类能力的前提下,该算法的运行时间远低于其他两种方法。
Hbase
5
2024-05-12
克服K-均值聚类的限制-聚类分析数据挖掘算法
克服K-均值聚类的限制原始点ttttK均值簇一种方法是使用尽可能多的簇,然后执行合并操作
数据挖掘
2
2024-08-01
快速K-均值聚类图像分割算法源代码优化
快速K-均值(k-means)聚类算法是一种常用的数据挖掘技术,广泛应用于图像分割。该算法基于中心点的迭代更新,将数据点分配到最近的聚类中心,以此来对图像进行分类。在图像处理中,每个像素视为一个数据点,通过k-means算法可以有效地将图像分割成多个具有相似颜色或特征的区域。在描述的\"快速K-均值聚类图像分割算法源代码优化\"中,我们推测这是一种图像分割实现方式。通常,k-means算法包括以下几个步骤:1.初始化:选择k个初始质心(cluster centers),可以随机选取或根据先验知识设定。2.分配数据点:计算每个像素点到所有质心的距离,并将像素点分配给最近的质心所在的簇。3.更新质心:重新计算每个簇的质心,通常是该簇内所有像素点的平均值。4.判断收敛:如果质心的位置没有变化或满足预设的迭代次数,则算法收敛;否则回到第二步。在提供的文件列表中,kmeans.m很可能是用MATLAB编写的k-means算法实现。MATLAB是一种常用的科学计算语言,其语法简洁,适合进行算法实现。loadFile.do.htm可能是一个HTML文件,用于说明如何加载数据,或提供一个界面来读取图像文件。loadFile.do_files可能是与loadFile.do相关的辅助文件,支持数据的加载和处理。在实际图像分割中,k-means算法可能会遇到以下挑战:1.簇的数量k需要预先设定,选择最佳k值通常依赖于具体任务和领域知识。2.算法对初始质心的选择敏感,不同的初始位置可能导致不同结果,因此可能需要多次运行并选择最优解。3.k-means假设数据是凸分布的,对于非凸或有噪声的数据,效果可能不佳。在处理图像时,通常进行预处理,如调整像素值范围、降维(PCA)、归一化等,以提高算法性能。此外,k-means后可能需要后处理步骤,如去除小面积孤立区域、合并相邻小簇等。快速K-均值算法在图像分割中的应用,是数据挖掘技术在图像分析领域的重要实例,通过聚类将图像划分为不同类别,帮助我们理解和解析复杂的图像信息。
数据挖掘
0
2024-09-14
改进K-近邻法的文本分类算法分析与优化
文本自动分类技术是数据挖掘的重要分支,K-近邻法作为常见的文本分类算法之一,其存在一些局限性。基于对K-近邻法的分析,针对其不足提出了改进方案,在保证判定函数条件的前提下,优化了算法,避免了K值的搜索过程,从而降低了计算复杂性并提升了效率。实验证明,改进后的K-近邻法在文本分类任务中具有显著的效果。
数据挖掘
2
2024-08-03