在高维数据匿名发布中,传统的抽象化技术易造成信息缺损,导致发布数据在实际应用中的价值下降。而分解技术虽然确保了数据真实性,却因视图划分破坏了属性间的内在关联,进一步限制了数据的可用性。针对这一问题,该文提出了基于极大关联属性集的分解法(MAAD)。MAAD借助频繁模式挖掘技术,寻找具有强关联性的属性组,以此指导多视图分解的生成。通过优先考虑属性间的关联性,MAAD生成的多视图在隐私保护与数据挖掘性能之间实现了平衡。
基于极大关联属性集分解的高维数据隐私保护方法
相关推荐
基于社区划分的改进k度匿名隐私保护方法
针对传统k度匿名隐私保护方法在图结构中易受结构性背景知识攻击的问题,提出了一种基于社区划分的改进方法。该方法将网络节点分为社区内节点和连接社区的边缘节点两类,并通过不同的匿名化策略实现了社区内节点的度匿名和边缘节点的社区序列匿名,有效提升了整个社交网络的k度匿名保护水平。实验证明,该方法不仅降低了数据实用性损失,还能抵抗基于节点度和节点所在社区关系的背景知识攻击。
数据挖掘
0
2024-09-25
Tucker分解:高维数据分析利器
Tucker分解工具包:释放高维数据的潜能
Tucker分解作为一种强大的张量分解技术,能够有效地对高维数据进行分析和处理。此工具包提供了高效的算法和工具,帮助您轻松实现:
SVD分解: 对高维数据进行降维,提取关键特征。
多重因子分析: 探索数据中的潜在结构和关系。
张量分解: 将高维数据分解为多个低维因子,便于分析和解释。
应用领域:
推荐系统
图像处理
自然语言处理
生物信息学
使用Tucker分解工具包,您将能够:
发现数据中的隐藏模式
提高数据分析效率
构建更精准的预测模型
立即探索Tucker分解工具包,解锁高维数据分析的无限可能!
Matlab
6
2024-04-30
隐私保护数据挖掘前沿研究
随着移动互联网、物联网等技术的蓬勃发展,个人隐私数据面临着前所未有的侵犯风险。隐私保护数据挖掘成为数据挖掘领域的热点,研究者们针对移动端、分布式系统、高维数据和时空数据等场景下隐私保护问题,提出了多种方法和算法,取得了丰硕的成果。
数据挖掘
4
2024-05-13
Hadoop 安全与隐私保护
Hadoop 安全机制保障了大数据平台数据隐私与安全,有效防御外部攻击和内部威胁。
Hadoop
4
2024-05-01
序列模式挖掘隐私保护研究
针对序列模式挖掘中的隐私保护问题,研究人员提出了名为CLDSA(当前最少序列删除算法)的创新算法。
该算法通过对候选序列进行加权,并在删除过程中动态更新权重,以贪心算法获得局部最优解,从而最大限度地减少对原始数据库的修改。
实验结果验证了CLDSA算法在隐藏敏感序列方面优于现有方法,实现了更有效的隐私保护。
数据挖掘
5
2024-04-30
极大似然估计的方法
极大似然估计方法是一种常见的统计推断方法,通过寻找使得观测数据出现的概率最大的参数值来估计参数。极大似然估计方法在统计学中具有广泛的应用,可以应用于各种数据分析和模型建立中。
算法与数据结构
1
2024-07-23
基于规则的数据集分类方法优化规则关联分类的创新应用
基于规则的分类方法称为关联分类(AC),通常在数据挖掘中根据监督学习的数据集构造准确的分类器。它提取“If-Then”规则,并将每个生成的规则与两个计算出的参数关联:支持和置信度。当前的AC算法中,每次将规则插入分类器时,相应的训练数据会被丢弃,但实际上这些数据用于计算其他规则的支持和置信度,影响其他较低排名的规则。静态支持和置信度会导致大型、不准确的分类器,因此需要改进支持和置信度的计算方法。
数据挖掘
0
2024-08-22
大数据环境下个人隐私保护研究
随着大数据时代的到来,个人信息加工方式的转变加剧了隐私侵权问题。文章结合大数据环境下个人隐私安全存在的问题,梳理了问题成因,并提出了从技术、政策和法律等角度进行大数据时代个人隐私保护的可行性建议。
算法与数据结构
2
2024-05-19
信息时代数据挖掘与隐私保护
本章介绍了本书的内容和各章节的概述。首先,指出了数据挖掘和分析在信息社会中的必要性及其潜在影响。特别是在处理数据挖掘算法中如何整合法律和道德规范以防止歧视方面,提出了技术和非技术解决方案。本章最后概述了本书的结构,包括数据挖掘和分析的应用机会、潜在的歧视和隐私问题、法律、规范和市场应用中的实际解决方案。
数据挖掘
3
2024-07-13