Spark运行模式包括local本地模式(包括单线程和多线程)、standalone集群模式、yarn集群模式、mesos集群模式以及cloud集群模式。在不同的环境下,可以选择合适的模式来管理资源和任务调度,比如AWS的EC2可方便访问Amazon的S3。此外,Spark支持多种分布式存储系统如HDFS和S3。
Spark运行模式介绍与入门指南
相关推荐
Spark运行模式与性能优化指南
Spark运行模式概述
Spark的运行模式主要包括Standalone模式、YARN模式和Mesos模式,根据不同的需求可以灵活选择。每种模式在资源管理和调度上各有优劣,需要根据集群环境做出选择。
作业提交
在作业提交时,通过Spark-submit命令可以实现本地或集群中的任务分发。配置提交参数时要关注内存分配和核数的设置,以保证资源的合理利用。
RDD与Spark SQL的使用
RDD(弹性分布式数据集):Spark核心组件之一,具备容错性和高效并行计算能力。通过对RDD的操作,如map、reduce等,能够实现多种数据处理。
Spark SQL:用于结构化数据的查询与分析,允许通过DataFrame和SQL语法对数据进行处理,便于数据分析与挖掘。
Spark Streaming
Spark Streaming实现了实时数据流处理,支持从多种数据源(如Kafka、Flume等)接收数据,通过RDD等API实现流处理任务,适用于实时数据分析和监控。
性能优化心得
在性能优化方面,主要包括内存管理、数据分区和缓存策略的合理设置。同时,选择合适的数据格式(如Parquet)可以有效减少I/O操作,提升查询性能。
spark
0
2024-10-30
Spark 入门指南
此学习资料适合初学者,提供 Spark 的基础入门知识。
spark
4
2024-05-01
Spark 入门指南
Spark 是一种类似 Hadoop 的开源集群计算环境。与 Hadoop 相比,Spark 具有以下优点:启用了内存分布数据集、支持交互式查询和优化了迭代工作负载。Spark 采用 Scala 语言实现,将 Scala 作为其应用程序框架。Scala 与 Spark 紧密集成,使 Scala 能够像操作本地集合对象一样轻松操作分布式数据集。
spark
6
2024-05-13
Spark 2017 运行指令速查指南
Spark 2017 运行指令速查指南
涵盖 Spark 三种运行模式 (local, standalone, yarn) 的常用指令示例,帮助您快速上手并高效运行 Spark 任务。
Local 模式
运行 Spark shell: ./bin/spark-shell
提交 Spark 应用: ./bin/spark-submit --class --master local[N]
Standalone 模式
启动集群: ./sbin/start-all.sh
提交 Spark 应用: ./bin/spark-submit --class --master spark://:7077
Yarn 模式
提交 Spark 应用: ./bin/spark-submit --class --master yarn --deploy-mode
更多资源
深入学习 Spark,请访问 https://github.com/huangyueranbbc 获取更多示例和教程。
spark
4
2024-04-30
Spark on Yarn模式部署指南
Spark on Yarn模式部署是将Spark应用程序部署在Yarn集群上的常见方法,这样可以利用Yarn的资源管理和调度功能,从而提升应用程序的性能和可靠性。步骤一:修改主机名,添加主机名到IP地址映射首先,创建三台虚拟机并安装Ubuntu服务器操作系统。编辑/etc/hostname文件,修改虚拟机的主机名,并添加主机名到IP地址映射。完成后,重启虚拟机。步骤二:配置免密码登录配置master免密码登录master、slave1和slave2,以便在后续操作中免密码登录到这些主机。步骤三:安装并配置JDK8下载并安装JDK8,配置Java环境变量。将JDK8复制到/usr/目录并解压缩,编辑/etc/profile文件,添加Java环境变量信息,并执行命令使配置立即生效。步骤四:配置Hadoop下载Hadoop的binary版本,并上传到master主机。在新建的spark-on-yarn目录中,将Hadoop和Spark复制到该目录下,编辑profile文件,添加Hadoop home环境变量信息,并配置Hadoop的环境变量和配置文件。部署优点这种部署方式利用了Yarn的资源管理和调度功能,提高了应用程序的性能和可靠性,同时简化了应用程序的管理和维护工作。结论Spark on Yarn模式部署是一种高效且可靠的Spark应用程序部署方式。
spark
2
2024-07-13
Apache Spark编程入门指南
Spark编程指南是一本适合初学者的入门手册,涵盖了Apache Spark的核心概念和操作,帮助编程人员快速掌握Spark的使用并理解其生态系统。Apache Spark是一个快速、大规模、通用的计算引擎,提供了丰富的高级API,支持Java、Scala、Python和R等编程语言。Spark的设计目标是支持数据在内存中的处理,以提高数据处理速度,也被称为内存计算。与Hadoop MapReduce相比,Spark可以将作业中间结果保存在内存中,避免昂贵的磁盘I/O操作,大大提升处理效率。Spark编程的核心是围绕RDD(弹性分布式数据集)展开的,RDD是分布式内存的一个抽象概念,提供一个容错的并行操作数据集。在Spark中,所有计算都围绕着RDD执行,RDD可视为Spark的灵魂。RDD具有两个核心操作:转换(Transformations)和行动(Actions)。转换操作创建一个新的RDD,例如map和filter;行动操作则返回结果或将数据写入外部存储系统,例如count和first。Spark还提供了键值对操作,支持更复杂的计算,如MapReduce、连接(Joins)和分组(Groups)。这些操作通常用于处理键值对数据,允许用户轻松实现分布式数据操作。Spark Streaming是Spark的一个扩展,用于处理实时数据流,用户可从Kafka、Flume、Twitter等不同来源接收实时数据,并使用Spark的API处理数据。Spark Streaming引入了一个新的概念DStream(Discretized Stream),表示连续的数据流,可以看作是RDD的序列,并提供用于数据流的转换和行动操作。在使用Spark时,监控和调优性能是重要环节。监控可以了解应用的运行状态和资源使用情况;调优则是在性能不足时,通过分析和修改来提高效率,包括减少任务执行时间、设置合理并行度及使用缓存等策略。SparkSQL是Spark用于结构化数据处理的模块,允许用户使用SQL查询数据,同时提供DataFrame API便于操作半结构化数据。SparkSQL支持Hive、JSON、Parquet等数据格式。
spark
0
2024-11-07
Spark 入门与环境搭建
Spark 从零开始
本指南将带您踏上 Spark 之旅,涵盖从基础概念到实际环境搭建的完整流程。
Spark 核心概念
弹性分布式数据集 (RDD):Spark 的基石,一种可并行操作的容错数据集。
转换和行动: RDD 支持两种操作,转换产生新的 RDD,行动触发计算并返回结果。
Spark 运行模式: 了解本地模式、集群模式等的差异,选择适合您需求的模式。
环境搭建指南
Java 安装: Spark 运行需要 Java 环境,请确保已安装 Java 8 或更高版本。
下载 Spark: 从 Spark 官方网站获取最新版本的 Spark 预编译版本。
解压并配置: 解压下载的 Spark 包,并设置必要的环境变量,如 SPARK_HOME。
验证安装: 启动 Spark shell,测试环境是否配置成功。
深入探索
Spark SQL: 使用 SQL 语句处理结构化数据。
Spark Streaming: 实时处理数据流。
MLlib: 用于机器学习的 Spark 库。
GraphX: 用于图计算的 Spark 库。
spark
3
2024-04-30
Spark SQL入门与应用
Spark SQL 入门与应用
本资源深入探讨 Spark SQL 的基础知识及其在 Spark 应用中的作用。
通过学习,您将:
掌握 Spark SQL 的核心概念和使用方法。
了解如何运用 Spark SQL 完成常见的大数据项目任务,例如数据分析、数据清洗和数据转换等。
提升处理和分析大数据的效率。
spark
3
2024-04-30
Idea运行Spark程序工具
可以在github上下载hadoop2.7.3-on-windows_X64-master.zip,亲测可用。
Hadoop
4
2024-04-30