数据挖掘视角
当前话题为您枚举了最新的 数据挖掘视角。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
大数据集的挖掘——数据挖掘新视角
互联网和电子商务的普及带来了大量的数据集,这些数据成为数据挖掘的宝贵资源。本书侧重于解决数据挖掘中关键问题的实用算法,即使是处理最大数据集也能游刃有余。首先讨论了Map-Reduce框架,这是自动并行化算法的重要工具。作者详解了局部敏感哈希和流处理算法的技巧,用于处理数据量过大而无法进行详尽处理的情况。接着介绍了PageRank算法及其在组织网络信息中的应用技巧。其他章节涵盖了发现频繁项集和聚类的问题。最后几章分别讨论了推荐系统和网络广告的应用,这两者在电子商务中至关重要。本书由数据库和网络技术领域的两位权威专家撰写,无论对学生还是从业者都是必读之作。
算法与数据结构
1
2024-07-15
模式矩阵数据挖掘技术的新视角
模式矩阵通常采用矢量表示数据对象,每个矢量在多维空间中描述对象的多方面特征。每个维度代表一个特征,多个对象的矢量形成模式矩阵(Pattern Matrix),即(xij)mn。每行表示一个对象,每列描述一个特征。这种方法在数据挖掘中具有重要应用价值。
Hadoop
1
2024-07-15
数据挖掘新视角探索毒蘑菇数据集
数据挖掘是信息技术领域的关键分支,涉及从大数据中发现有价值的信息和知识。在这个案例中,我们专注于“毒蘑菇数据集”,这是一个广泛应用于大数据分析和机器学习任务的标准样本集。数据集中的“agaricus-lepiota.data”文件核心部分包含了不同蘑菇种类的详细信息,特别是区分毒蘑菇和可食用蘑菇的特征,如颜色、形状、气味和生长环境等。每行代表一个观测样本,列对应不同的特征值,支持各类分类模型的训练,如决策树、随机森林、支持向量机和神经网络。此外,“Index”文件提供了压缩包内各文件的简要描述,便于用户快速定位和理解文件用途。而“agaricus-lepiota.names”文件详细描述了每个特征的含义,为数据理解和预处理提供重要参考。README文件则提供了数据集的详细信息,包括数据来源、收集方法、预处理步骤及使用注意事项。扩展文件“expanded.Z”可能包含更多样本或附加信息,增强数据集的训练效果。毒蘑菇数据集不仅适用于机器学习初学者,也为专家提供优化算法和评估模型性能的实践机会。
数据挖掘
0
2024-08-05
数据挖掘与约束编程的全新视角
这本电子书讨论了数据挖掘的最新技术与约束编程的经典理论,是一部高清的英文版经典著作。
数据挖掘
0
2024-10-21
基于视角的空间数据挖掘方法 (2006年)
为了满足用户在不同场景下对空间数据挖掘的个性化需求,该研究提出了空间数据挖掘视角的概念。该视角能够在明确具体数据挖掘需求的基础上,利用相应的数据挖掘算法,从海量空间数据中提取不同粒度的空间知识。研究首先深入探讨了空间数据挖掘视角的内涵和外延,进而提出了一系列相应的算法,最后将该视角应用于滑坡监测数据的实际挖掘中,取得了令人满意的效果。
数据挖掘
3
2024-05-29
并行数据处理云计算与数据挖掘的新视角
并行数据处理(ETL)操作分为普通和链式两类,涵盖清洗、转换、集成、计算、抽样、集合、更新等八大类。这些技术在云计算和数据挖掘领域中扮演重要角色,支持大规模数据处理和分析需求。
数据挖掘
2
2024-07-15
多种数据挖掘的视角-浙大关于大数据的讲解
根据不同数据库分类,包括关系数据库、事务数据库、流式数据等,以及多种知识类型的分析和方法集成,涵盖面向数据库的挖掘、数据仓库、OLAP、机器学习等技术,应用于金融、电信、欺诈分析等领域。
Memcached
2
2024-07-18
数据挖掘第二版(韩家炜)新视角解读
数据挖掘核心概念与技术详解####一、引言《数据挖掘:概念与技术》是一本由韩家炜教授及其合著者所著的经典教材,自2000年问世以来一直被视为学习数据挖掘领域的不可或缺之作。本书深入浅出地介绍了数据挖掘的基本原理和技术,并广泛涵盖了其应用场景,帮助读者从海量数据中提取有价值信息的能力。####二、数据挖掘概述1. 数据挖掘的定义与重要性:数据挖掘是从大量数据中自动或半自动地提取出未知、有效且可理解模式的过程,其重要性在于帮助企业和组织更好地理解和利用数据资产,从而做出更明智的决策。2. 数据挖掘的应用范围:数据挖掘可以应用于各种数据类型,包括关系数据库、数据仓库、事务数据库和高级数据库系统等,每种数据类型具有独特特性和挑战,因此需要不同的挖掘技术和方法。3. 数据挖掘的功能:数据挖掘的功能包括概念/类描述、关联分析、分类与预测、聚类分析、离群点分析及演变分析等,这些功能帮助用户识别数据中的模式和趋势。 - 概念/类描述:描述特定类别的数据特征及其与其他类别的差异。 - 关联分析:揭示不同变量之间的联系,如市场篮子分析。 - 分类与预测:通过建立模型来预测未来数据的行为或结果。 - 聚类分析:将相似的对象分组,有助于发现数据集内的结构。 - 离群点分析:识别不符合常规模式的数据点,可用于欺诈检测等领域。 - 演变分析:跟踪数据随时间的变化趋势。####三、数据仓库与OLAP技术1. 数据仓库简介:数据仓库是一种支持业务智能和决策支持系统的中心化数据存储库,收集来自多个源的数据,并将其转换为统一格式,以便于分析和报告。2. OLAP技术:在线分析处理(OLAP)是数据仓库中最常用的技术之一,允许用户快速执行复杂的分析操作,如聚合、切片和切块等。3. 多维数据模型:多维数据模型是OLAP的核心,通常采用星型、雪花型或事实星座等模式组织数据。4. OLAP操作:OLAP提供多种操作,如钻取、切片和切块等,使用户能够灵活地探索数据的不同视图。5. 数据仓库的系统结构:数据仓库的结构通常包括三层:数据源层、数据仓库层和前端工具层,确保数据的一致性和完整性。
数据挖掘
0
2024-09-25
空间数据挖掘的新视角空间统计学应用探析
空间统计学(Spatial Statistics)依赖于有序模型描述无序事件,通过分析、评估和预测空间数据,基于统计空间实体的几何特征量如最小值、最大值、均值、方差、众数或直方图,获得空间实体特征的先验概率。它在多元统计分析中特别有效,如判别分析、主成分分析、因子分析、相关分析和多元回归分析。空间统计学拥有坚实的理论基础和成熟的算法,是基本的数据挖掘技术之一。然而,对于空间数据库中的相关数据,传统的统计假设常常无法满足实际需求,这也是其发展面临的挑战之一。
算法与数据结构
0
2024-08-15
Oracle系统视角
Oracle的系统视图为开发过程提供更多支持,使得访问数据模型的元数据更加灵活。
Oracle
0
2024-08-30