数据分析规范
当前话题为您枚举了最新的数据分析规范。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
CDR数据分析
利用通信CDR数据库进行后台操作和数据分析,便于深入了解通信行为模式和优化网络性能。
Access
2
2024-05-15
大数据分析
这本书是关于大数据分析的教科书,由斯坦福大学知名教授Anand Rajaraman和Jeff Ullman整理编写而成,内容非常实用。
数据挖掘
0
2024-10-12
数据分析数据集
使用 Python pandas 和第三方包演示功能的数据集,包含于《利用 Python 进行数据分析》中。
算法与数据结构
7
2024-05-01
阅读态度八维度的规范数据分析郊区教区学校学生视角
研究了来自俄亥俄州东北部郊区教区学校的学生阅读态度八个维度的规范数据。研究由FRED H. WALLBROWN和DORIS COWGER进行,涵盖了阅读态度各维度的平均值、标准偏差、测量标准误差和可靠性α系数估计。具体维度包括表达读数、读作直接强化、阅读即享受、替代学习模式、阅读组、阅读焦虑、默读vs.口头阅读以及漫画阅读。研究结果指出,综合因子分析显示阅读态度是一个复杂的概念,不应仅通过单一测试分数进行评估。
统计分析
2
2024-07-13
手机销售数据分析
手机销售数据分析
这份 Jupyter Notebook 文件(.ipynb)包含了对手机销售情况的深入分析。通过探索和可视化销售数据,我们可以揭示出有价值的见解,例如:
畅销机型: 识别哪些手机型号最受欢迎,以及它们的销售趋势。
销售渠道: 分析线上和线下等不同销售渠道的表现。
地区差异: 比较不同地区或城市的销售情况,找出潜在的市场机会。
客户画像: 了解购买手机的典型客户群体特征。
销售趋势预测: 利用历史数据预测未来销售趋势,帮助制定销售策略。
使用 Python 和各种数据分析库,我们可以对销售数据进行全面的探索和分析,为业务决策提供数据支持。
统计分析
9
2024-04-30
Python 数据分析概述
使用 Python 进行数据分析,了解其优势、功能和应用。
数据挖掘
4
2024-05-01
大数据分析代码
Scala 实现的大数据分析代码,包括最高在线人数、登录日志分析、付款情况分析等。
spark
4
2024-05-13
解读数据分析
数据分析将大量原始数据转化为洞察力的过程。它利用统计方法深入挖掘数据背后的信息,揭示隐藏的规律,最终形成有价值的结论。这对于制定决策和采取有效行动至关重要,同时也是质量管理体系的重要支撑环节。
算法与数据结构
3
2024-05-19
Python 数据分析入门
通过学习本教程,掌握使用 Python 语言进行数据分析的技能。
算法与数据结构
3
2024-05-19
IT运维数据分析
IT运维大数据及综合分析系统PPT,内容全面,值得参考。
Hadoop
3
2024-05-20