多维分析
当前话题为您枚举了最新的 多维分析。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Kylin多维分析.pdf详解
Kylin多维分析知识深入探讨####一、Apache Kylin简介及多维分析概念- Apache Kylin:Apache Kylin是一个开源的分布式分析引擎,它基于Hadoop/Spark,提供SQL查询接口和多维分析(OLAP)能力,支持快速查询大规模数据集。该项目由eBay Inc.开发,于2014年捐赠给Apache软件基金会并成为顶级项目。 - 多维分析:多维分析能从多个角度和维度(至少包括两个)分析数据,使分析师能灵活探索数据的多个侧面,深入理解数据背后的故事。 ####二、Kylin核心功能详解#####外部功能: - 可扩展的大数据OLAP引擎:Kylin支持PB级数据规模,能在亚秒级完成对Hive表的查询。 - 交互式查询:支持即时分析。 - 实时OLAP:实现实时或接近实时的数据分析。 - Hadoop ANSI SQL接口:支持标准SQL查询。 - 多维立方体(MOLAP Cube):通过预计算和存储多维数据的聚合结果,加速查询速度。 - 与BI工具无缝集成:兼容Tableau、SuperSet、Hue、PowerBI等商业智能工具。 #####内部功能: - 任务管理与监控:提供任务调度和监控功能,保障数据分析任务的高效执行。 - 数据压缩与编码:采用高效的数据压缩技术,减少存储空间需求。 - 增量更新/全量更新:支持实时或批量数据更新。 - HBase Coprocessor索引机制:通过HBase的Coprocessor实现高效索引操作。 - 基于HyperLog的DistinctCount近似算法:提供高效的近似计数方法,提升查询性能。 - 友好的Web界面管理:提供易用的图形化用户界面,简化数据分析流程。 - 项目及权限控制:支持细粒度的权限管理,确保数据安全和合规性。 - 支持SSO、LDAP、Spring:集成单点登录、轻量目录访问协议和Spring框架,增强系统安全性和灵活性。 ####三、产品架构图及关键特性详解
Hadoop
0
2024-10-10
使用 Kylin 构建 OLAP 多维分析数据集
动态 OLAP 报表通常利用 Kylin、Saiku 和 Mondrian 等技术组合实现。其中,Kylin 负责构建高效的多维数据集(Cube)。
Hadoop
5
2024-05-23
基于读写分离的 Kylin 多维分析平台构建
介绍了如何在读写分离架构下构建基于 Kylin 的多维分析平台,并分享了实践经验。
spark
3
2024-06-01
MATLAB 2014a代码-MFMDA多因素多维分析
MATLAB 2014a版本的代码现已推出,支持MFMDA多因素多维分析方法,为研究人员提供了强大的工具和资源。该代码集成了最新的算法和优化策略,帮助用户实现复杂数据的高效分析与处理。
Matlab
3
2024-07-19
Oracle+BIEE 培训资料,涵盖多维分析需求
此培训资料提供全方位分析应用支持,涵盖:- Hyperion Essbase 分析- 查询和报表仪表盘- 第三方集成- 客户分析- 供应链分析- 物流分析- 预算制定- 财务报表合并- 预测和盈利分析
Oracle
3
2024-05-01
基于 Hadoop 的多维分析与数据挖掘平台架构
互联网、移动互联网和物联网的迅猛发展,将我们带入了一个前所未有的海量数据时代。面对数据规模的爆炸式增长,如何高效地分析和挖掘数据价值成为亟待解决的关键问题。
Hadoop 平台凭借其卓越的可伸缩性、健壮性、计算性能以及成本优势,已成为当前互联网企业构建大数据分析平台的首选方案。依托 Hadoop 生态系统,可以构建一个强大的多维分析和数据挖掘平台,以应对海量数据的挑战。
该平台架构的核心在于利用 Hadoop 分布式文件系统(HDFS)存储海量数据,并借助 MapReduce、Spark 等计算框架实现高效的数据处理和分析。同时,整合机器学习、数据挖掘等算法库,可以进一步挖掘数据背后的潜在价值,为业务决策提供有力支持。
数据挖掘
2
2024-05-23
Oracle数据仓库解决方案的多维分析实现
通过Presentation向导,实现多维分析的数据获取、管理和展现,为Oracle数据仓库提供全面解决方案。
Oracle
0
2024-09-27
多维数据分析:切片与切块
切片和切块技术使用户能够更改数据维度并选择感兴趣的数据子集进行分析。
这种分析方法涉及多个维度和多个数据项类别,揭示:
典型的业务行为和规则
例外事件
异常活动
算法与数据结构
2
2024-05-31
多维数据判别分析非参核密度算法
针对传统判别算法对数据分布类型假定的局限,提出采用非参核密度算法建立多维数据的判别规则。该算法充分利用样本信息,显著提高判别精度,且不受分布假定的限制。
数据挖掘
2
2024-05-15
多维空间中的多元统计分析
多维空间的推广中,第一主成分$y_1$的方差最大,反映了最丰富的信息量。如果第一主成分仍不足以反映所有原始变量的信息,接着考虑选择第二主成分$y_2$,它在剩余线性组合中具有最大的方差,并且与$y_1$不相关。若第一、第二主成分仍不足以反映所有变量信息,再考虑选择第三主成分$y_3$,$y_3$在剩余组合中方差最大,并且与$y_1$、$y_2$不相关。依此类推,可以得到全部$p$个主成分,它们的方差逐次减少。在实际应用中,通常选取前几个主成分进行分析,以简化数据结构。
统计分析
2
2024-07-13