Kylin多维分析.pdf详解
相关推荐
使用 Kylin 构建 OLAP 多维分析数据集
动态 OLAP 报表通常利用 Kylin、Saiku 和 Mondrian 等技术组合实现。其中,Kylin 负责构建高效的多维数据集(Cube)。
Hadoop
5
2024-05-23
基于读写分离的 Kylin 多维分析平台构建
介绍了如何在读写分离架构下构建基于 Kylin 的多维分析平台,并分享了实践经验。
spark
3
2024-06-01
MATLAB 2014a代码-MFMDA多因素多维分析
MATLAB 2014a版本的代码现已推出,支持MFMDA多因素多维分析方法,为研究人员提供了强大的工具和资源。该代码集成了最新的算法和优化策略,帮助用户实现复杂数据的高效分析与处理。
Matlab
3
2024-07-19
Oracle+BIEE 培训资料,涵盖多维分析需求
此培训资料提供全方位分析应用支持,涵盖:- Hyperion Essbase 分析- 查询和报表仪表盘- 第三方集成- 客户分析- 供应链分析- 物流分析- 预算制定- 财务报表合并- 预测和盈利分析
Oracle
3
2024-05-01
基于 Hadoop 的多维分析与数据挖掘平台架构
互联网、移动互联网和物联网的迅猛发展,将我们带入了一个前所未有的海量数据时代。面对数据规模的爆炸式增长,如何高效地分析和挖掘数据价值成为亟待解决的关键问题。
Hadoop 平台凭借其卓越的可伸缩性、健壮性、计算性能以及成本优势,已成为当前互联网企业构建大数据分析平台的首选方案。依托 Hadoop 生态系统,可以构建一个强大的多维分析和数据挖掘平台,以应对海量数据的挑战。
该平台架构的核心在于利用 Hadoop 分布式文件系统(HDFS)存储海量数据,并借助 MapReduce、Spark 等计算框架实现高效的数据处理和分析。同时,整合机器学习、数据挖掘等算法库,可以进一步挖掘数据背后的潜在价值,为业务决策提供有力支持。
数据挖掘
2
2024-05-23
Oracle数据仓库解决方案的多维分析实现
通过Presentation向导,实现多维分析的数据获取、管理和展现,为Oracle数据仓库提供全面解决方案。
Oracle
0
2024-09-27
Kylin OLAP引擎算法大数据多维聚类分析软件的优势
大数据时代,多维数据分析和聚类分析成为OLAP引擎软件的核心功能,支持ODBC链接。
算法与数据结构
0
2024-09-22
Apache Kylin与竞品的比较分析.pdf
Apache Kylin与竞品的详细对比####一、概述Apache Kylin是一款专注于高效OLAP服务的开源项目,在大数据处理领域拥有独特的Cube预计算技术。通过深入比较Kylin及其竞品,探讨它们在底层技术、大数据支持、查询速度及吞吐率等方面的异同,帮助读者全面了解Kylin的优势。 ####二、竞品分析##### 1.大数据处理技术共性几乎所有大数据处理工具都采用以下关键技术: - 大规模并行处理(MPP):通过增加计算节点,提升整体处理能力。这种方式适用于处理大量数据,能够在固定时间内处理更多数据。 - 列式存储:相较于传统行式存储,列式存储能有效减少I/O操作,提高数据读取效率。在处理复杂查询时,只需读取相关列,显著减少不必要的数据读取。 - 索引技术:利用索引结构能快速定位数据,减少不必要的数据扫描。特别是对于大型数据集,索引尤为重要。 - 数据压缩:通过压缩技术减小数据存储空间,提高存储密度,加快数据加载速度。虽然这些技术能提升数据处理速度,但随着数据量成倍增长,效果逐渐减弱。例如,MPP架构下的计算时间会随数据量增加而延长;列式存储需要更大存储空间;索引需要扫描更多数据块;压缩后的数据量也会成倍增长。 ##### 2. Apache Kylin的独特优势与竞品相比,Apache Kylin的最大亮点在于采用Cube预计算技术。该技术通过数据预先聚合、生成物化视图,极大降低了查询时的数据处理量,使得查询速度不受数据量增长影响。具体体现在以下几个方面: - SQL接口:大多数竞品支持标准或类SQL接口,Kylin同样支持。尽管Druid不支持SQL,但因其特定设计的存储引擎和限制的查询能力,在查询性能方面表现优秀。 - 大数据支持:大部分产品在处理亿至十亿级数据时表现良好,但面对更大规模数据时性能显著下降。相比之下,Kylin依靠预计算技术,即使处理千亿级数据量也能保持秒级响应。 - 查询速度:随着数据量的增长,Kylin能够稳定保持查询速度,不像其他竞品会随数据增长而下降。随着数据规模的扩展,这
Hadoop
0
2024-08-21
多维数据存储实施策略详解
探讨了数据仓库实施的方法和技术,并详细介绍了OLAP系统的建立过程。
Oracle
3
2024-07-24