在线自整定

当前话题为您枚举了最新的 在线自整定。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

基于数据挖掘实现IMC-PID在线自整定
该算法利用过程历史数据自动进行数据挖掘,实现PID参数在线自整定。算法依据PID回路的动态响应特性,通过给定ε-不敏感损失函数和辨识信任度函数,从可行数据集中选取有效数据集,作为回路参数自整定的有效数据。为确保PID控制达到最佳性能和鲁棒性,提出了基于对象组进行IMC-PID参数整定的方法。该算法已应用于多个生产装置,实际投运结果表明,该算法简便易用,推广能力强,是PID参数整定算法中一种切实可行的算法。
MATLAB中PID参数整定仿真源码及仿真图下载
MATLAB中的PID控制器仿真是一个关键的研究领域,提供了相关的源代码和仿真图供下载使用。
基于MATLAB的一阶延迟系统PID控制器参数整定
本程序利用多种方法,实现了含延迟环节一阶系统的PID控制器参数计算,方法包括: Ziegler-Nichols 方法 Cohen-Coon 方法 IMC 方法
SQL 指令彙整
本指南彙整了常見的 SQL 指令,供資料庫操作使用。
自伴变换与斜自伴变换
自伴变换与斜自伴变换 除了正交变换,欧氏空间中还有两类重要的规范变换:自伴变换和斜自伴变换。 定义 设 A 是 n 维欧氏空间 V 的线性变换。 如果 A 与它的伴随变换 A∗ 相同,即 A = A∗,则 A 称为自伴变换。 如果 A 满足 A∗ = −A,则 A 称为斜自伴变换。 线性变换 A 是自伴变换的充分必要条件是:对任意 α,β ∈ V,均有 (A(α), β) = (α, A(β))。 线性变换 A 是斜自伴变换的充分必要条件是:对任意 α,β ∈ V,均有 (A(α), β) = −(α, A(β))。 自伴变换和斜自伴变换都是规范变换。当然,除了正交变换、自伴变换以及斜自伴变换外,还有其他的规范变换。 自伴变换 定理 n 维欧氏空间 V 的线性变换 A 是自伴变换的充分必要条件是:A 在 V 的标准正交基下的方阵是对称方阵。 证明 设线性变换 A 在 V 的标准正交基 {α₁, α₂, ..., αn} 下的方阵是 A,则 A 的伴随变换 A∗ 在这组基下的方阵是 AT。于是 A∗ = A 等价于 AT = A。∎ 定理表明,如果在 n 维欧氏空间 V 中取定一组标准正交基 {α₁, α₂, ..., αn},V 的自伴变换 A 便和它在这组基下的方阵相对应。这一对应是 V 的所有自伴变换集合到所有 n 阶实对称方阵集合上的一个双射。于是自伴变换即是是对称方阵的一种几何解释。 由于自伴变换是规范变换,因此关于规范变换的结论可以移到自伴变换上。当然,由于自伴变换是特殊类型的规范变换,所以相应的结论也带有某种特殊性。 由实对称方阵的特征值都是实数可知,自伴变换的特征值也都是实数。 定理 设实数 λ₁, λ₂, ..., λn 是 n 维欧氏空间 V 的自伴变换 A 的全部特征值,其中 λ₁ ≥ λ₂ ≥⋯ ≥ λn。则存在 V 的一组标准正交基,使得 A 在这组基下...
定积分求解演示
本示例展示了在 Matlab 中使用 quad 和 int 函数求解定积分。quad 函数通过数值积分来近似计算积分,int 函数则使用符号积分来计算积分。
协整分析与时间序列建模
这一算法是一种基于MATLAB编写的协整建模工具,能够直接应用于数据序列的分析。
求定积分-软件matlab
求解给定函数在指定区间内的定积分命令是Quad1。例如,计算函数在特定区间内的定积分,在Matlab中执行相应的命令可以得到积分值。二重积分的命令也可以用来求解。
商品分类自关联
购物网站项目中使用自关联的方式来定义商品类目分类。
利用MATLAB进行超定和欠定方程组的左除法求解
MATLAB提供了强大的功能,用于解决超定和欠定方程组的问题。例如,对于给定的方程组A=[1,2,3; 4,5,-6; 7,8,9; 10,11,12]; 和 b=(1:4)',可以使用左除法求解得到 x = -0.3333 0.6667 0.0000。在另一个例子中,方程组A=[1,4,7,10; 2,5,8,11; 3,-6,9,12]; 和 b=[1 3 3]',左除法计算出 x = 2.0000 0.1667 0 -0.1667。