自伴变换与斜自伴变换
除了正交变换,欧氏空间中还有两类重要的规范变换:自伴变换和斜自伴变换。
定义
设 A 是 n 维欧氏空间 V 的线性变换。
- 如果 A 与它的伴随变换 A∗ 相同,即 A = A∗,则 A 称为自伴变换。
- 如果 A 满足 A∗ = −A,则 A 称为斜自伴变换。
线性变换 A 是自伴变换的充分必要条件是:对任意 α,β ∈ V,均有 (A(α), β) = (α, A(β))。
线性变换 A 是斜自伴变换的充分必要条件是:对任意 α,β ∈ V,均有 (A(α), β) = −(α, A(β))。
自伴变换和斜自伴变换都是规范变换。当然,除了正交变换、自伴变换以及斜自伴变换外,还有其他的规范变换。
自伴变换
定理
n 维欧氏空间 V 的线性变换 A 是自伴变换的充分必要条件是:A 在 V 的标准正交基下的方阵是对称方阵。
证明
设线性变换 A 在 V 的标准正交基 {α₁, α₂, ..., αn} 下的方阵是 A,则 A 的伴随变换 A∗ 在这组基下的方阵是 AT。于是 A∗ = A 等价于 AT = A。∎
定理表明,如果在 n 维欧氏空间 V 中取定一组标准正交基 {α₁, α₂, ..., αn},V 的自伴变换 A 便和它在这组基下的方阵相对应。这一对应是 V 的所有自伴变换集合到所有 n 阶实对称方阵集合上的一个双射。于是自伴变换即是是对称方阵的一种几何解释。
由于自伴变换是规范变换,因此关于规范变换的结论可以移到自伴变换上。当然,由于自伴变换是特殊类型的规范变换,所以相应的结论也带有某种特殊性。
由实对称方阵的特征值都是实数可知,自伴变换的特征值也都是实数。
定理
设实数 λ₁, λ₂, ..., λn 是 n 维欧氏空间 V 的自伴变换 A 的全部特征值,其中 λ₁ ≥ λ₂ ≥⋯ ≥ λn。则存在 V 的一组标准正交基,使得 A 在这组基下...