MPI并行化
当前话题为您枚举了最新的MPI并行化。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
MPI并行WARSHALL算法
MPI并行实现WARSHALL算法
算法与数据结构
3
2024-05-25
MPI并行矩阵乘法实现指南
在Linux环境下成功实现矩阵乘法的MPI并行运算。使用命令 mpicc -o 编译程序,并通过 mpirun 命令运行。
算法与数据结构
0
2024-10-31
MPI消息发送模式
MPI 提供四种消息发送函数,它们参数相同,但发送方式和对接收方的要求不同。
标准模式 (MPI_Send):由 MPI 系统决定是否将消息复制到缓冲区立即返回,或等待数据发送完成后返回。
缓冲模式 (MPI_Bsend):MPI 系统将消息复制到用户提供的缓冲区后立即返回,用户需确保缓冲区大小足够。
同步模式 (MPI_Ssend):基于标准模式,要求确认接收方已开始接收数据后才返回。
就绪模式 (MPI_Rsend):调用时必须确保接收方已处于就绪状态,否则会产生错误。
后三种模式函数名在标准模式函数名 MPI_Send 后加上 B、S 和 R,参数相同。
算法与数据结构
4
2024-05-21
MPI查询文件参数
查询打开文件的进程组句柄,用户释放句柄。
查询文件访问模式。
算法与数据结构
2
2024-05-25
变邻域搜索算法MATLAB实现-ParallelClassics通过MPI和CUDA并行编程优化的经典算法
变邻域搜索算法 MATLAB 代码是通过串行和并行编程实现的一组强大计算能力的经典算法。通过比较串行与并行的计算结果,探索了工具、技术和解决方案的差异。该项目利用随机数生成问题并展示并行编程的强大功能,特别是在解决类似 KNN 问题时的表现。
变邻域搜索算法的实现过程中,空间被划分为多个模拟邻域的盒子(立方体)。在每个盒子中,随机生成q类型或c类型的点。对于每个q点,算法需要找到其最近的c邻居。项目中采用了 C 语言以及并行技术(如 MPI 和 CUDA)实现了这一过程。所有实现都包含了验证功能,以确保结果的正确性。
串行实现的过程中,空间被划分为v个框,并在其中生成Numq个随机的q点和Numc个随机的c点。每个点根据其位置都归属于一个特定的框。为了找到每个q点最接近的c点,算法会在邻域框中进行搜索,并选择其中最接近的c。框和点的数量可以由用户自由选择,但必须是2的幂次方。
要编译代码,请在与“knn.c”文件相同的目录下打开终端并运行:
$ gcc -std=gnu89 knn.c -o executable-file-name -lm
其中,executable-file-name 是你想要生成的可执行文件名。
Matlab
0
2024-11-05
pm代码matlab-并行化_研讨会
Matlab、Python和R中的并行编程研讨会
受众:了解如何使用上述语言之一进行编码以执行串行任务,但希望了解如何进行并行编码的任何人。
先决条件:- 脚本语言之一- Linux基础知识- ssh进入远程系统- 文件系统导航- 在远程系统上编辑文件- 使用Matlab、Python或R进行编程
课程资料:
第1天 - 并行计算简介- 09:00 am - 09:15 am:介绍- 09:15 am - 10:15 am:并行计算基础- 10:15 am -10:30 am:休息- 10:30 am - 12:30 pm:并行计算最佳实践- 12:30 pm - 01:30 pm:午餐- 01:30 pm - 03:30 pm:在并行计算中使用Slurm- 03:30 pm - 03:45 pm:休息- 03:45 pm - 04:45 pm:分析您的代码
第2天 - 并行Matlab和高吞吐量计算- 09:00 am - 09:15 am:介绍
Matlab
2
2024-04-30
P2P并行化应用: 原理与技术
可并行化P2P应用擅长处理计算密集型任务,将大型任务分解成多个子任务,并在大量独立的对等端上并行执行。这一方法充分利用互联网上众多计算机的闲置算力,解决需要大量计算的复杂问题,例如使用不同参数的相同计算任务:外星生命搜索(SETI@home)、密码破解、风险预测、市场和信誉评估、人口统计分析等。
构件化应用尚未在P2P领域得到广泛认可,这类应用涉及在多个对等端上运行不同的构件,如Workflow、JavaBean、Web Services等。
统计分析
3
2024-05-16
优化SQL查询性能并行化散列连接技巧
Oracle在执行并行化散列连接时,将驱动表加载到RAM队列中的hash_area_size,然后使用专用的散列方法与较大的表进行连接。对于等值连接,散列连接常优于嵌套循环连接,特别是在驱动表小于hash_area_size时。但若驱动表过大,可能导致临时段写入TEMP表空间,影响查询速度。全表扫描和并行查询对表连接同样重要。
Oracle
0
2024-08-22
PSPM-开源工具的并行化神经影像分析
PSPM,全称为Parallel SPM,是基于SPM的开源并行实现,主要用于处理和分析功能磁共振成像(fMRI)、结构磁共振成像(sMRI)等数据。与传统SPM相比,PSPM通过MPI实现分布式和并行计算,显著提升了处理速度和效率。MPI允许在多处理器或跨网络的多台计算机上运行并行程序,有效分解和执行任务。在神经影像分析中,PSPM并行化处理图像校准、配准、标准化等预处理步骤,支持简单的统计分析并行化,如方差分析或t检验。PSPM2-2.0.2-beta版本在测试阶段,包含新功能、性能优化和bug修复,提升用户体验和分析效率。其开源性质促进了社区的协作和创新,推动了神经影像分析技术的发展。
统计分析
0
2024-09-13
并行结构
H.T.关于并行结构的论文
算法与数据结构
2
2024-07-18